Final Report June 2002

REPORT ON DEVELOPMENT OF COMPUTER SIMULATION PROGRAMME FOR CONSERVATION OF WATER IN PULP & PAPER INDUSTRY BY RECYCLING OF WASTEWATER

Sponsored by:

DEVELOPMENT COUNCIL FOR PULP, PAPER AND ALLIED INDUSTRIES

Ministry of Industry, Udyog Bhawan, New Delhi 110 011

INDIAN AGRO PAPER MILLS ASSOCIATION, 709, Pragati Tower, 26, Rajendra Place New Delhi 110 008

Tel: +91 11 5773961/5773962/63, Fax: +91 11 5768639 E-mail: techsupport@pulpandpaperindia.com, *Website:www.inpaper.com*

CONTENTS

	Торіс	Page No.
1.	Introduction	1
2.	Project Objectives	2
3.	Selection of Mill for the study	2
4.	Methodology	3
5.	Software Features	4
6.	Initial Assumption for recycling o	ptions 5
7.	Water Consumption break-up (Present vs Proposed)	6
8.	Implementation options	6
9.	Economics of the System	7
10.	Details made for present water con is shown in Annexure - I (1-9) and after reuse and recycling are show Annexure -II (1-9)	proposed 7
11.	Present status	7-8
12.	Amrit Paper at a Glance	8
13.	Actual and proposed fresh water c (m³/t) as measured and projected in	onsumption 8 n Annexure-III
14.	Implementation options at Amrit	8 -10
15.	Conclusion	10-11
	Enclosures	Annexure-I, II & III

****()****

DEVELOPMENT OF COMPUTER SIMULATION PROGRAMME FOR CONSERVATION OF WATER IN PULP AND PAPER INDUSTRY BY RECYCLING OF WASTE WATER

1. INTRODUCTION

Water consumption for Indian pulp and paper mills is very high in comparison to the paper mills in the major paper producing countries. The consumption of water in an integrated pulp and paper mill vary from 220-300 M³ per tonne of paper. But the developed countries with their R&D support and technological development have brought down the consumption of the fresh water to around 20-40 M³ per tonne of paper.

Higher water consumption in the paper mills has many adverse impacts like higher cost of water treatment, generation of higher quantity of wastewater, higher cost of effluent treatment and adverse environmental impact. Moreover, the water is scarce commodity and its conservation is essential.

Because of the complex nature of wastewater generated from different sectors of the mill, recycling in the mill is normally restricted. With a computer simulation programme, the characteristics of wastewater at different stages can be ascertained on-line and a network system can be developed for maximum utilization of wastewater without affecting quality of product and equipments.

2. **PROJECT OBJECTIVES**

Pulp and paper making processes required dilution & dewatering at various stages resulting in requirement of large quantity of fresh water and discharge of wastewater. However, some wastewater streams either individually or mixed with others can be judiciously recycled. The main objective of the project is to reduce the water consumption in the Indian paper industry with the help of computer simulation in the mills. A system design to be developed for the software by mathematical modeling and to be applied in the mills with network system.

3. SELECTION OF MILL FOR THE STUDY

After having some preliminary exercise on selection of a willing mill, M/s. Shree Vindhya Paper Mills Limited, located at Jalgoan, Maharashtra was selected for the study. This is a 100 TPD mill based on conventional raw materials like hard wood and non conventional raw materials like bagasse, the details of the same is given in Table 1. The high cost of water in the mill was considered as one of the major criteria to select the site of this mill for the study. M/s. KLG Systels Limited, one of the India's competent scientific and engineering software development organizations was engaged in the project.

Table 1 INSTALLED CAPACITY (PAPER) IN TPA

INSTALLED CAPACITY (PAPER) IN TPA	33000	
RapeMarenal	Bagasse	Wood (Pugalyptus)
Current Broduction TPA	18000	6000
Type of Digesters	Spherical	Vertical signification
17 PC 24- 5	Rotary	
No-O. Chorasters and the second	5	
REAN MERICAL CONTRACTOR PRODUCTION	300	200 see
Bleaching sequence	C,EH,H	С,ЕН,Н

4. METHODOLOGY

In order to achieve the maximum recycling wastewater, the following steps were adopted for simulation exercise: -

- Modeling all major equipment, which affect the water flow system in paper mill as objects attributes such as consistency at inlet/outlet/vat. Process equipment in the chemical recovery section has been omitted from the initial study; however, surface condenser discharge flow has been included in the system.
- Extracting and encapsulating required parameter ranges/values for water inlet to each equipment. The parameters included for consideration include pH, Solids Content (Dissolved), Clarity and Fiber Content.
- Measure/obtain average values of parameters in the outlet streams for each equipment. The parameters included pH, solids, clarity and fiber content. The pollution load parameters at each outlet viz. BOD, COD were also decided to be considered for optimization.
- Expert rules on infeasibility of certain recycles to be extracted and encapsulated.
- Ability to use the system in manual simulation mode to allow expert users to visually see the effect of any stream as chosen for recycle interactively.
- Based on consistency, values fed as input calculation of the mill water balance dynamically.
- Robust non-linear optimization technique for selecting the most optimal recycle stream combination considering all of the above constraints and factors.

5. SOFTWARE FEATURES

The software application developed by KLG Systel Limited is based on proven expert system technology and will cover all of the objectives as laid out for the application.

Salient features of the package are detailed below: -

- 1. Representation of all process equipment in a typical mill as graphical objects, which have attributes with user definable values.
- 2. Calculation of water balance at the mill in a dynamic fashion based on consistency and pulp throughput.
- 3. Easy to use input screens for specifying the required parameter value/ranges for water inlet at each equipment.
- 4. Effect of manufacturing colored paper on water balance considered.
- 5. Encapsulated expert rules on certain forbidden recycle combinations.
- 6. GUI based, Mouse Driven manual recycle simulation selection.
- 7. Real-time input from field sensors (digital sensors only) for outlet parameters and flow values,
- 8. Real-time control of recycle flow through direct interfacing with field level controllers/control valves,
- 9. Real-time monitoring of various other process parameters from digital sensors as attributes of graphically modeled equipment objects.
- 10. Validation of sensor values within specified ranges to ascertain sensor failures etc.

6. INITIAL ASSUMPTION FOR RECYCLING OPTIONS

(i) Chemical Recovery

The condensate from the multi effect evaporator is a reasonably clear stream with some mercaptan presence.

(ii) Brown Stock Washer

The pH of the pulp stream in this section is alkaline and the unbleached pulp is to be sent to the chlorine tower for chlorination. Proposed to use the hypo washer outlet stream for the first 2 stages of BSW and fresh water for the last stage showers.

(iii) Dilution

In going with the principle of establishing countercurrent flow of streams in the pulping washers with the exception of chlorine rich stream, it has been proposed to utilize hypo-washer outlet stream instead of fresh water in this area.

(iv) Chlorine washer

Since semi bleached pulp after chlorine washer is sent to the caustic washer, we can afford to add the caustic washer outlet flow in the chlorine washer.

(v) Caustic washer

The caustic stage at present utilizes a large amount of backwater from the hypo stage and fresh water input is required only for some showers.

(vi) Hypo washer

The flow of machine backwater to this section needs to be increased for the hypo washer to be completely fresh water independent.

(vii) In arriving at all of the above recommendations, care has been taken to ensure that shorter recycled loops are given priority over longer loops. This would avoid any perpetual solids build up in the system.

7. WATER CONSUMPTION BREAK-UP (PRESENT VS PROPOSED)

Equipment	Present Fresh Water Consumption	Proposed Fresh water requirement		
Boiler	450	450		
Chemical recovery	860	570		
	1230	1230		
Wood Pulp Mill	10	10		
Digester	2996	1584		
BSW	400	484		
Screening/Centricleaning	440	300		
Dilution	400	660		
Chlorine Washer	0	0		
Dilution	400	0		
Casutic Washer	0	0		
Dilution	2550	1350		
Hypo Washer	540	540		
Stock Preparation	()	0		
Centricleaning		1075		
Wire Part Shower	1875	400		
Compressor glands, cleaning	900	4775		
Total	8405	63.67		
m^3 /ton consumption	112.07	05.07		

WATER CONSUMPTION BREAK-UP Present VS proposed

8. IMPLEMENTATION OPTIONS

• Implementation as real-time control software for flow control for minimal fresh water utilization based on inputs from sensors for pH, solids, clarity etc. This form of implementation would require digital control equipment/PLCs, control valves and field level electronic sensors. If implemented in this mode the software will also provide the additional features of real –time monitoring of certain parameters as described in the software features section.

• Implementation in an off-line mode for suggesting recycles flow strategy that would be implemented by manual/automatic control of flow valves.

9. ECONOMICS OF THE SYSTEM

At Glance

Present water consumption	-	$112 \text{ m}^{3}/\text{ton}$
Envisaged water consumption after recommendations	-	$90 \text{ m}^3/\text{ton}$
Savings in Water Consumption	-	$22 \text{ m}^3/\text{ton}$
Annual cost of savings in water consumption	-	Rs.72,60,000
Operating costs, effluent treatment, pumping etc.	-	Rs. 44,55,000
Net savings realized	-	Rs.28,05,000
Cost of modifications and software implementation	-	Rs. 14,10,000
Pay back period	-	6 months

10. Details made for present water consumption is shown in Annexure - I (1-9) and proposed after reuse and recycling are shown in Annexure –II (1-9).

11. PRESENT STATUS

After completion of the basic studies, the project was to be implemented in the mill. But Sri Vindhya Paper Mills Limited was closed due to labour strike and it continued for a number of months. It was therefore, decided to take up this project to M/s. Amrit Papers (A unit of ABC Group). They have given their consent for demo plant study on computer simulated water conservation project.

The basic studies have been completed at Amrit Paper Mills as given in the enclosed project report.

12. AMRIT PAPER AT A GLANCE

Amrit Paper, a division of the Amrit Banaspati Co. Ltd, is located at Saila Khurd, Distt, Hoshiarpur in Punjab. It is a medium sized agro based mill with an installed capacity of 26,400 tonnes per annum of paper and has a pulp mill producing 75 tonnes per day of bleached pulp from agro wastes such as Kahi grass, wheat and rice straw. The unit primarily manufactures writing and printing papers. The mill has made constant endeavor for improvement in the past.

13. Actual and proposed fresh water consumption (m³/t) as measured and projected in Annexure-III. Initially the details were worked out only for the pulp mill.

14. IMPLEMENTATION OPTIONS AT AMRIT

- **Option 1:** Pilot implementation of results as obtained after a simulation run is carried out by KLG using the average parameters of a mill. This would not necessitate major additional equipment installation at the mill except for some additional piping work that would have to be carried out.
- Option2: Implementation in an off-line mode for suggesting recycle flow strategies that would be implemented by manual/automatic control of flow valves. The inputs on pH and other parameters would be fed as user input into the system from a remote/central computer station after laboratory results for these tests are obtained. The recycle strategy may need to be changed in a batch mode, i.e., with every change in grade of paper and other process related changeovers the optimal recycle combination might vary.

At this stage the project has been divided into 2 phases. 1st Phase for monitoring basic parameters of different back waters generated at source, to find out which back water can be a source for other stream like wise for setting of characteristics of influent and effluent. Two pipelines have been changed as desired as per the above schedule.

The control valves have been placed in position and fresh water supply has been restricted in the plant. Only re-circulated water is being used which has resulted in reducing fresh water consumption from 88 to 50 in pulp mill. The valves are working on manual mode at present but after putting up the software it will be working on automatic mode. Hence the fresh water reduction will go to a level of $36m^3/day$ in the pulp mill.

As the Krofta Saveall installed in the mills are not working properly, the suspended solids for white water is more than 200 mg/l and therefore no online micro filter can work at such a high level of suspended solid. The mill has decided to put up MARKS SAVALL, which is expected to run at the efficiency of 95-96% and the SS load, below 50 mg/liter.

Accordingly the micro filter designed for filtering this water will work and the SS load will come to about 10 PPM or below. As soon as this phase (Phase II) is completed recycling system for the entire will be worked out. With the initial step of recycling, the mill has already reduced water consumption from 170m³/tonne to 130m³/tonne by way of recycling and restructuring the fresh water use.

Options 3: Implementation as a real control software for flow control for minimal fresh water utilization based on inputs from sensors for pH, solids,

clarity etc. This form of implementation would require digital control equipment/PLCs, control valves and field level electronics sensors. If implemented in this mode the software will also provide the additional features of real time monitoring of certain parameters as described in the software features section.

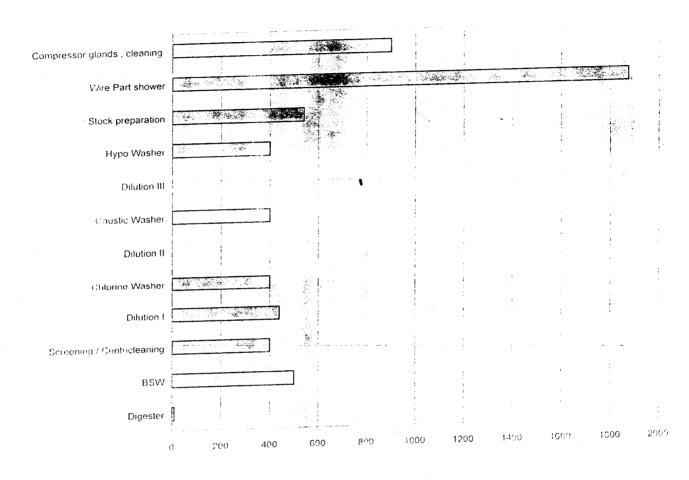
However, the mill with their available resources could not take up immediately the Phase II activity of option 2. The construction of mark saveall was likely to be delayed. The mill was also reluctant to invest the amount for installation of PLC & Digital control equipments. As a result the project could be completed only for option I and phase I of the option II and could gain the savings of around 40 m³ of water per tonne of paper with very little investment. Since the project was likely to be abnormally delayed, it was decided to stop the project at this stage.

15. CONCLUSION

The study carried out at Shree Vindhya Paper Mills for implementing the computer simulation programme reflected that, the mill could save 22 M^3 water/Tonne paper, saving Rs. 28,05,000/Year with investment of Rs. 14,10,000/- thus providing the pay back period of around six months. Since the mill was shut for a very long period due to labour trouble, it was unfortunate that this could not be implemented although the mill was fully cooperative in the study and was quite keen for implementation of the project.

After Shree Vindhay's closer, this project was transferred to M/s. A B C Paper Mills, Saila Khurd, Punjab. Part of the project was implemented with manual controls & slight change in routing of pipelines, resulting in saving of about 40 m^3 of water per tonne of paper. The mill, however, could not take interest in implementation of the scheme in near future due to their own limitation; the project was not followed further.

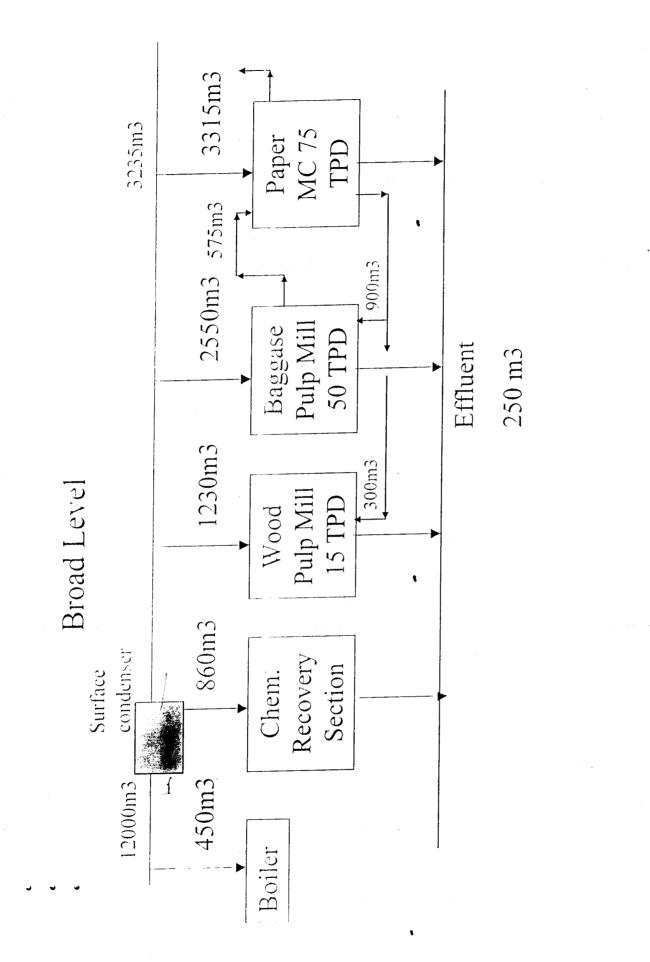
The schematic details on water use as worked out for Sri Vindhya Paper Mills for existing condition as well as for projected stage after implementation of the scheme are enclosed along with this report. The present & proposed water consumption for Amrit Paper mills for pulp mill is also enclosed.


SVPM

t

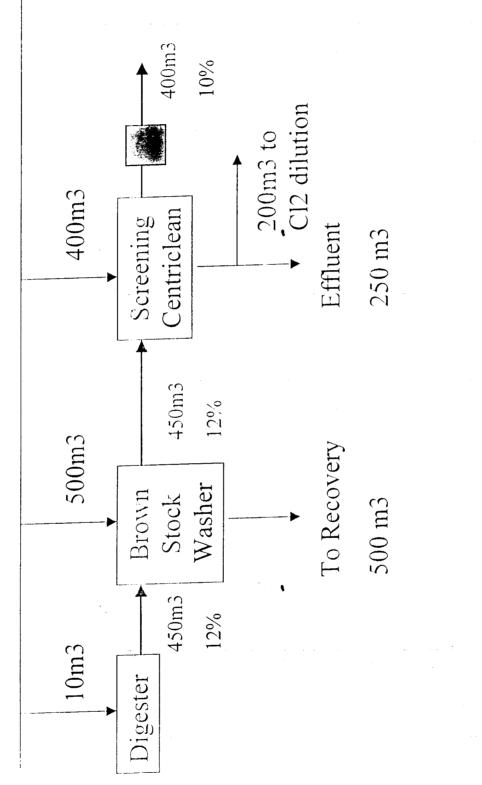
ļ

Present Water Flow System



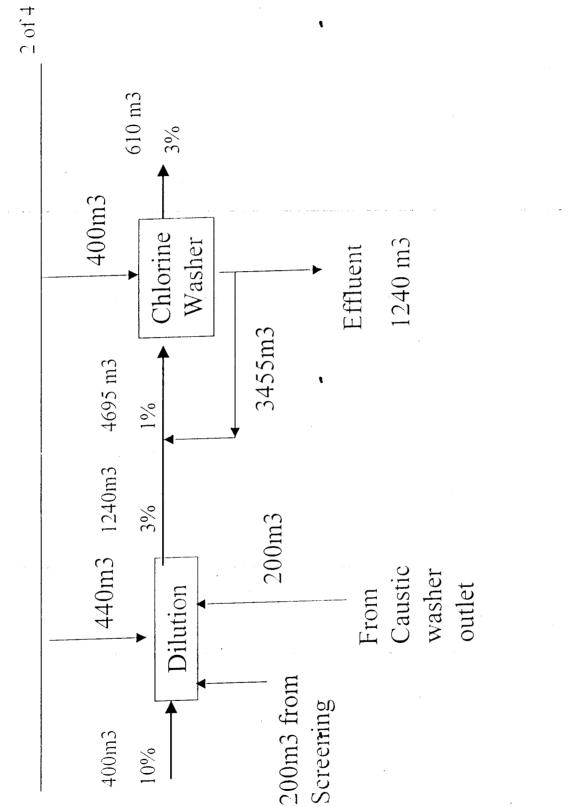
m3/day

J- 2


SVPM Water Consumption Break-Up Present

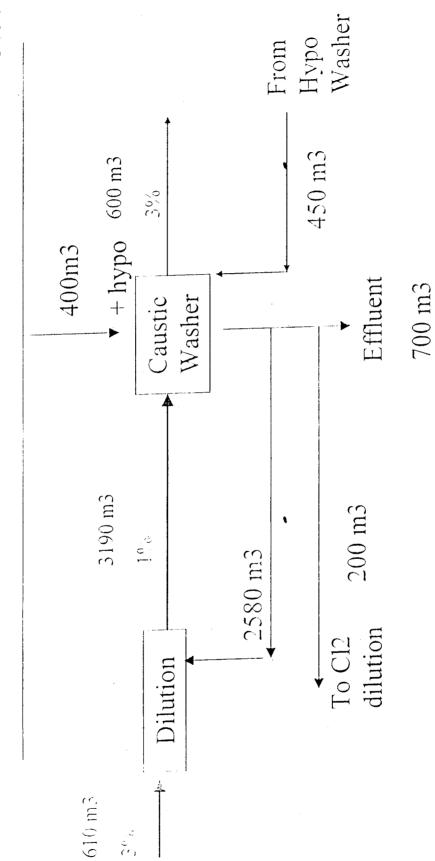
Equipment	m3/day
Boiler	450
Chemical recovery	• 860
Wood Pulp Mill	1230
Sinalstel Ellipa Mill	
Digester	10
Brown Stock Washer	500
Screening / Centricleaning	-400
Dilution	440
Chlorine Washer	400
Dilution	0
Caustic Washer	400
Dilution	0
Hypo Washer	-400
	2550
Stock preparation Filler chemicals	540
Wire Part shower	1875
Compressor glands, cleaning	900
compressive gamme of the	3315
TOTAL	8405

I-4


1 of 4

1-5

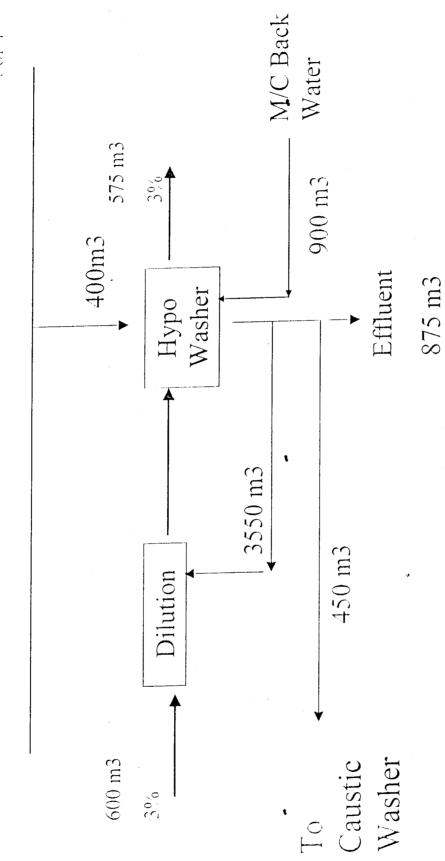
 \mathbf{v}


Bagasse Pulp Mill

1-6

Bagasse Pulp Mill

5

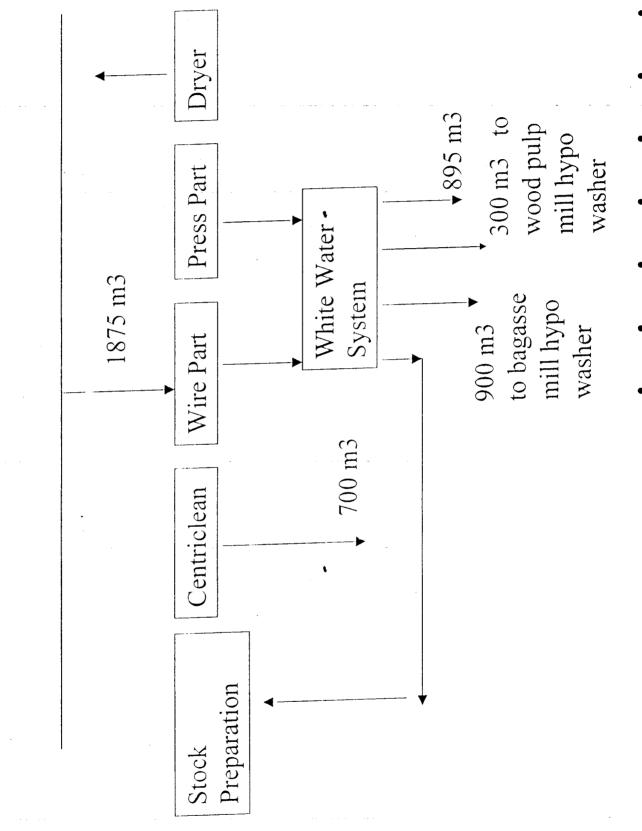


Bagasse Pulp Mill

<u>_</u>

3 of 4

]-9



+ () +

Bagasse Pulp Mill

I-8

Paper Machine

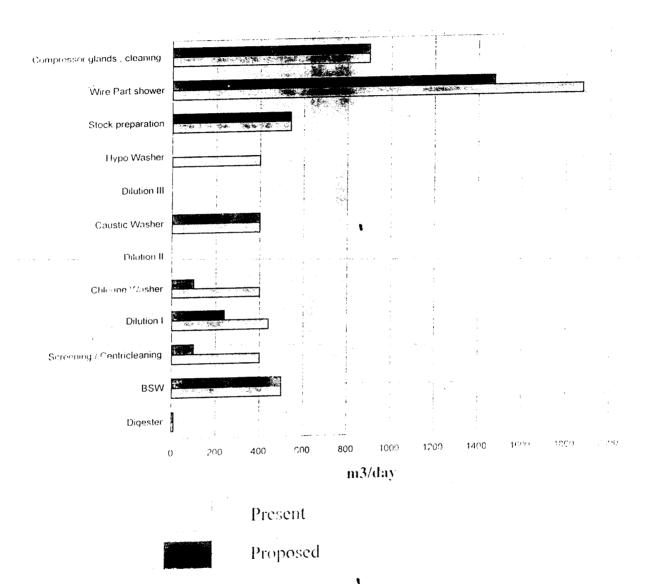
I- 9

~

SVPM

ł

ä,

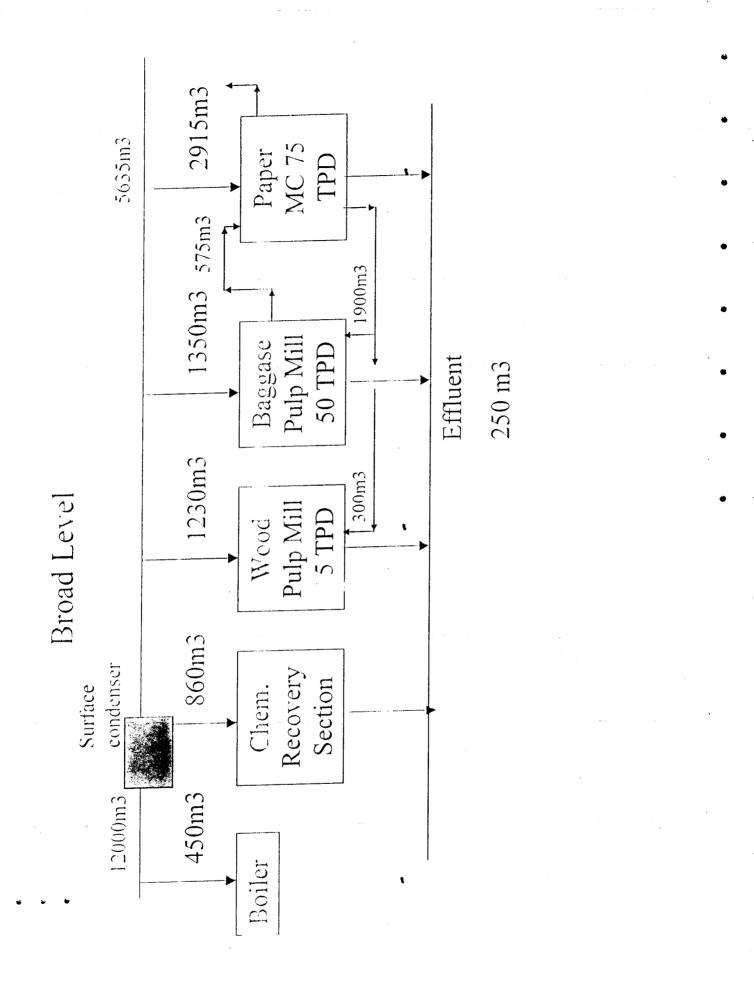

Proposed Water Flow System

t

① 1

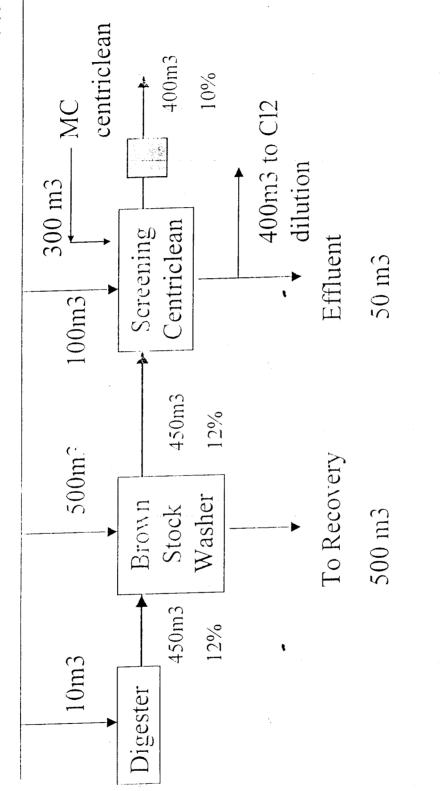
SVPM, Water Consumption Break-Up

Present Vs Proposed


2

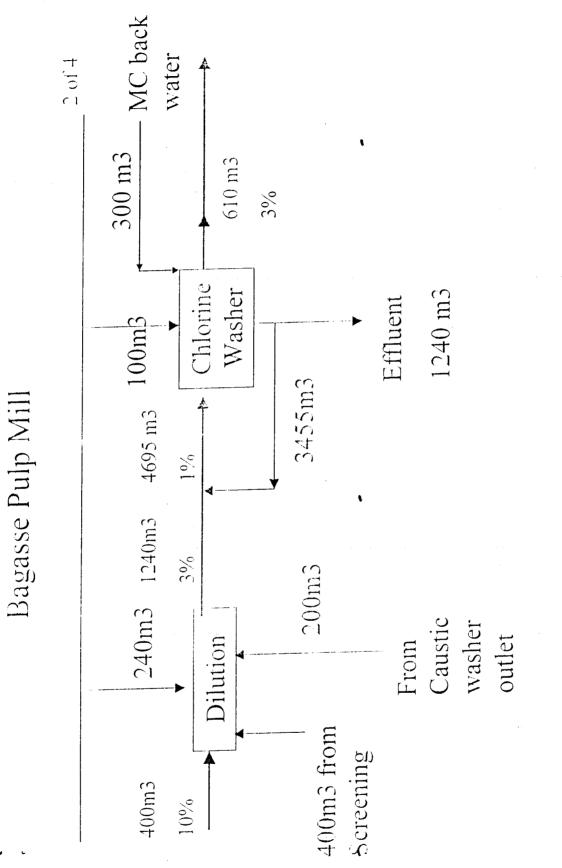
SVPM Water Consumption Break-Up Present Vs Proposed

	m3/day				
Equipment	Present	Proposed			
Boiler	450	450			
	860	860			
	1230	1230			
Digester	10	10			
Brown Stock Washer	500	500			
Screening / Centricleaning	-400	109			
Dilution	.4.10	2.10			
Chlorine Washer	400	100			
Dilution	()	0			
Caustic Washer	.100	400			
Dilution	0	()			
Hypo Washer	400	0			
	2550	1350			
Stock preparation .Filler chemicals	540	540			
Wire Part shower	1875	1475			
Chemical recovery Vood Pulp Mill GDAS (CONFIDENTIAL Digester Frown Stock Washer creening / Centricleaning Dilution hlorine Washer Dilution austic Washer Dilution Sypo Washer Confidential State of the state of the		900			
	3315	2915			
TOTAL	8405	6805			


.

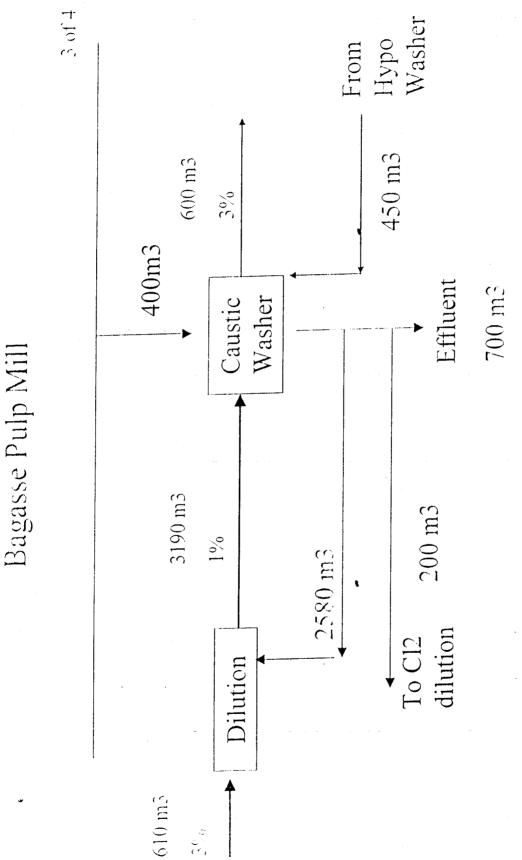
NEW OP WEEK

ヨーム


1 of 4

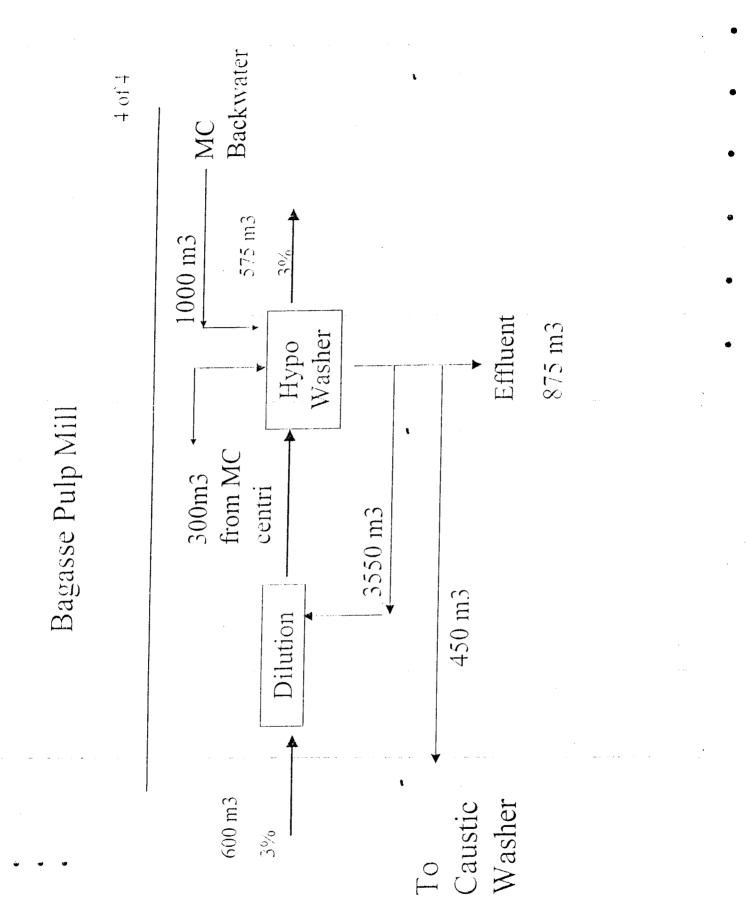
7.5

5


Bagasse Pulp Mill

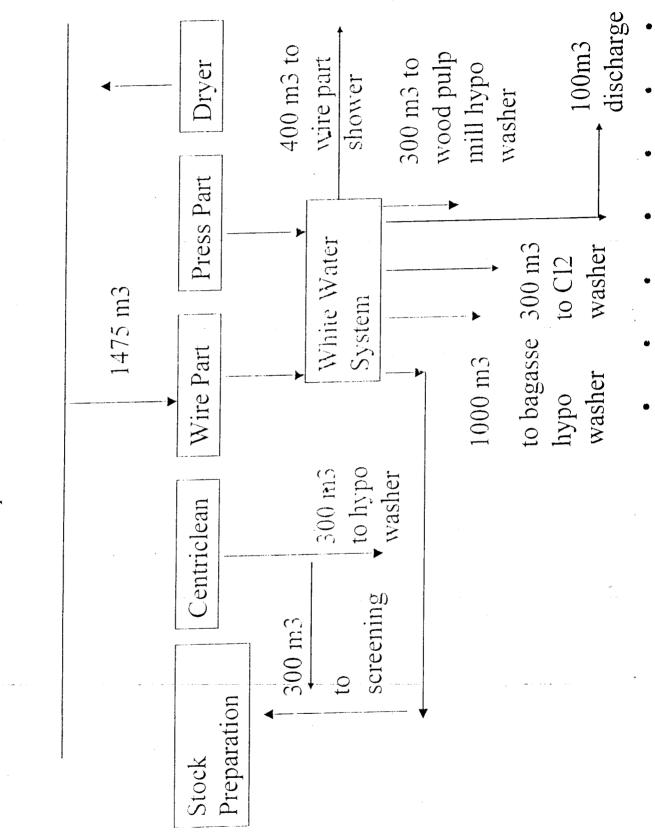
, î

Ĩ,


¢.ġ

、 ?

<u>[]</u>-


Ç.Y

T

S.

З.

Paper Machine

ij -1

<u>5</u>.

Annexure - III

Amrit Paper Fresh Water Consumption Break-Up Present Vs Proposed

(all figures: m3/day)

Equipment	Present	Proposed	Saving
Pôlp Mill			
Brown Stock Washing	1584	0	1584
Screening / Centricleaning	484	484	0
Chlorine Tower Dilution	300	0	300
Chlorine Washer	660	660	0
Nkali Washer	1320	440	880
lypo Washer	2244	1140	1104
l'otal	6592	2724	3868

HAR FOPE	r: COMPAL		1-110.001	, T					staine is				8. Š.
	BT-D model	BT-D actual	R-D model	R-D actual	VS-D model	VS-D actual	BS14-C model	BS14-C actual	BS14-M model	BS14-M actual	BS25-ID n⊬xdel	BS25-IC ectual	
				1				528					
IC IRT													
SW14 SW25 SW36	1913	1913	547	547	1506	1508	528		1056	1050	4324	4324	
IBPCC W IL													
LPCC IW			•										
	BS25-C model	BS25-C actual	9525-M model	0.00.00000000	9536-IC model	BS:V6-40 actual	assa-c model	BS36-C actual	8530-M model	BS36-M actual	DHD-I nv:del		
i MC		528						528					
IRT 05W14 05W25	528			.	• • • • • • • • • • • • • • • • • • •				1050	1036			1
ISW38 IBPCC DW			1056	1056	4324	432/	521				1810	0 1810	1
CL AW BLPCC HW						1							
	CS-ID	CS-ID	CS-D	¢S-D	DCW4	DCW4	CLT-IC		CLW-N		6	- 1 98 (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	model	actual	løbern	octual	mode 48-			ectual 30					
MC HRT			2667	266						661			
BSW14 BSW25 BSW36													
UBPCC DW CL	1005	1005					265	н					and the second sec
AW BLPCC HW								64	H 66	0			
	CLW-D model	CLW-D actual	CLW-		C ALW-I il mode		ID ALW-	M ALW		and managers in	C VBS- i mod	had a hyperble ball do	
F MC			58	0 66	0			81	90 44	0 44	o e		
HRT BSW14 BSW25	-												
OSW36 UBPCC DW CL	68	0											
AW BLPCC HW		66	0		19	71 16	171 	180			2	514 23	14

III/2

		LPCC-ID	1 11 0 44 5 5	44LA.B.T 4	LINNIA A	UVANTO			EIP	ETP		
an na anna anna anna anna anna anna an	ULPCC-ID	in the second second	and the second second second	Al maria and a second	and the first second	e a constante a subsection			modal	actual		
	labom	actual	model	actual	model	polual		1.00	10 10/0/09	896151981		-
				1 100	748	746						
ý.			392	1496	1415	(40	: 	Ka k				icereew
C			660	i San internet a					filmer a see			
		i inininininini comm										
RT		Nikan nada										
SWIA									1412	1940		
SV-25										528	}	
SW30			-							520		
BPCC	3		· · · ·			5	en annais na		in an			
Ŵ									1000.0 Ave 198			
L.												
w				1		c 4	90 h 1					
LPCC				1	.	۰. ۱	.					
Ŵ	1368	1.188	444	1		8. (
	1000	Forte		+	-	e -	1	4			<u>, , , , , , , , , , , , , , , , , , , </u>	
jan maga mana di		iligna and investor		•••••	. ·	•			C	••••		
				-	İ			+				
		EIP		- - -	ODAIN	DRAIN	a i ≱si	CONSU	JOTION		SAVING	S
· · · · · · · · · · · · · · · · · · ·	ETP	<u> </u>			LUNARA .	LALAMAN	u ukis in a				actual -	
					model	actual		model	actual		model	
ini	model	actual	ļ	e fan en	Insurates	060001		110000				
		mana and the second second	anas -		n der einer einer			2724	6592		3860	
					ļ			3327	3327	•	0	-
AC		مىرىكى سىرىكى مەربىيە سىرىكى						3981	ARE1			
المستورية			Į				ļ	i Loeo	1056		0	ł
IR I				i.	1			1056	590B	ļ.	Ö	ŀ
95V/14	1412	1	Acres and and				l		in the march		Same and the second	ļ
3SW25		520	a in a constant of the	.				5908	5908	January and	0	ļ
35W35		528	1	1	1.		112	5908	5908	3		ļ
JOPCC				Į	550		Same ad anna a'	0	0	inder a marine in	0	Į
W					2333		Sec. and contaction of a	1810	1810	🖌 jusii isan waa	1	ļ
26			1		353	a mandatar	§ : : : : : : : : : : : : : : : : : : :	4316	1005	ļ	+3311	.
					1320	A: In the group ways	â x	1971	1971	Same caun	D	l
¥W				4	1110	1110	1	0	i 0	1	0	E -
Suman and a second second				i i s cianna	114%	 contractions 	🕹 a 2 🛶 a 1000 a an	್ ಗ್ರಾಹಿಮ		· · · · · · · · · · · · · · · · · · ·	Section in the	5.44
AW BLPCC HW			ž	na i s signi i	1111	630	🕹 a 2 🛶 a 1000 a an	5685	5056		-630	27.199

Note: In the model, the bigger filter which will be installed in Decker Washer is considered. So UNBL-ID is not needed. Intel visution of Chlorine tower (CLT-ID) for the model and actual is not comparable as the actual figures are the existing

III/3

C

1