EVALUATION & IMPROVEMENT OF SURFACE PROPERTIES OF NEWSPRINT MANUFACTURED FROM RECYCLED FIBERS

(CESS PROJECT)

CENTRAL PULP & PAPER RESEARCH INSTITUTE SAHARANPUR – 247001 (U.P.)

EVALUATION & IMPROVEMENT OF SURFACE PROPERTIES OF NEWSPRINT MANUFACTURED FROM RECYCLED FIBERS

٩.

(CESS PROJECT)

Based on the work of

Dr. Y. V. Sood, P.C. Pande Sanjay Tyagi, R. Neethikumar, Arti Pandey, Nisha, Indranil Payra, Renu Tyagi, T. Johri, & Shobit Marwah

CENTRAL PULP & PAPER RESEARCH INSTITUTE SAHARANPUR – 247001 (U.P.)

ACKNOWLEDGEMENT

(

The authors are thankful to Dr. T. K. Roy, Officiating Director, Central Pulp & Paper Research Institute for useful technical discussions during the preparation of the final report. The management of Central Pulp & Paper Research Institute is thankful to the management of M/s Rolex Paper Mills Ltd., M/s Ajanta Paper Mills Ltd., M/s Sri Ramdas Paper Boards Pvt Ltd., M/s Sreen Sri Papers Ltd., M/s Nelsun Paper Mills Ltd., M/s Cosboard Industries Ltd., M/s Shakumbhari Straw Products Ltd., M/s Pragati Papers Ltd. & M/s Delta Paper Mills Ltd. for their cooperation during the course of the investigation of this project.

EXECUTIVE SUMMARY

Due to lack of suitable fibrous raw material, India for the last few decades has been importing about 50% (\pm 10 %) of its requirement of newsprint. The scenario is slowly changing as the recycling of waste paper is gaining momentum and this substantially improve the production of indigenous newsprint and reduce the imports in near future. At present, a large number of small and medium paper mills based on waste paper are manufacturing newsprint. Only few of these mills are able to meet the minimum quality standard. One of the main drawbacks is the inferior surface property of the sheet such as Smoothness, Gloss, etc.

The detailed investigations were carried out to systematically evaluate the surface characteristics of the indigenously manufactured newsprint from recycled fibers. The process systems of the nine mills based on waste paper were studied in detail. Based on the detailed study, the following recommendations are made to improve the newsprint quality

- The quality of newsprint being manufactured from waste papers by medium scale paper mills can be improved by systematic optimization of different process unit operations like Deinking, Calendering and fines retention at wire part.
- Foreign printed newspapers are comparatively easy to deink as compared to Indian newspapers especially the papers printed in local languages. This is probably due to excessive amount of oil content in the printing inks in latter. The unaged newspapers are relatively easy to deink. As long as possible unnecessary aging of newspapers should be avoided.
- The deinking chemicals being used by the mills need proper evaluation and selection. The chemicals suitable for Indian papers should preferably have sodium soap of fatty acid and copolymers.
- To get proper bulk, opacity and smoothness in newsprint the waste paper selection should be in such a way that the final furnishes content contains at least 50 % mechanical pulp content.

- High consistency pulper (HC) should be preferred over low consistency pulper (LC) for newsprint manufacture as it gives better reduction in dirt specks area at particular specific energy input.
- The moisture content in newsprint should be kept in the range of 9 to 10 % instead of 5 to 6 % as observed. This will give better runnability on printing press. This will also give appreciable financial saving to the manufactures.
- The smoothness. gloss and printing characteristics of newsprint from waste papers can be improved by improving formation and soft nip calendering. Soft nip calendering will help to get better smoothness and linting control than hard nip calendering.
- Double disc refiners which are generally being employed in Indian mills for refining of waste paper pulp are sometimes not suitable in the development of proper fiber flexibility, which may cause higher linting. The conflow refiners are generally more suitable for such furnish.
- The retention of fines is extremely important in improving the surface characteristics of newsprint. Retention aid of polyethylene amine type is quite effective as compared to alum or poly aluminum chloride.
- The production trials (Case Study) at five mills had shown that it is possible to manufacture newsprint conforming to BIS: 11688/1999 specifications after alterations/optimization of manufacturing process. Each mill required different approach.

CONTENTS

S. No.		CONTENT	PAGE No.
1.		Background	1
2.		Manufacture of newsprint using recycled fibers	2
3.		Newsprint characteristics generally sought by	5
		newspaper publishers	
4.		Steps involved in manufacturing process from	5
		waste paper as raw material	
	4.1	Slushing and deflaking	5
	4.2	Screening	6
	4.3	Dispersion & kneading	7
	4.4	Deinking floatation	8
	4.5	Bleaching	9
	4.6	Refining	9
	4.7	Papermaking	10
5.0		Quality of the newsprint being manufactured by	10
		waste paper based mills	
	5.1	Furnish optimization	11
6.0		Studies on laboratory calendering of waste paper	14
		containing newsprint	
7.0		Effect of different process variables on deinking of newsprint furnish	19
	7.1	Relative effect of major process variables	22
	7.2	Deinking trials	28
	7.3	Deinkability of Indian newspapers vs. Foreign newspapers	29
	7.4	Impact of raw material quality and storage on deinking performance	30
	7.5	Evaluation of yield	33
8.0		Case study I	33
9.0		Case study II	36
10.0		Case study III	39

11.0	Case Study IV	41
12.0	Case Study V	43
13.0	Retention Aid	45
14.0	Conclusions	45
15.0	Infra structure created	47
16.0	References	48
17.0	Appendix I: Data of Nine Medium scale Newsprint	52
	Mills manufacturing newsprint from wastepaper as	
	raw material	
18.0	Appendix II: General Process Flow Diagrams of	63
	Mills	

.

EVALUATION & IMPROVEMENT OF SURFACE PROPERTIES OF NEWSPRINT MANUFACTURED FROM RECYCLED FIBRES

1. BACKGROUND

Due to lack of suitable fibrous raw material, India for the last few decades has been importing about 50% (+10 %) of its requirement of newsprint which entails the out go of considerable amount of foreign exchange. The scenario is slowly changing as the recycling of waste paper (newspapers magazines & other varieties) is gaining momentum and this substantially improve the production of indigenous newsprint and reduce the imports in near future. At present a large no. of small and medium paper mills based on waste paper are manufacturing newsprint. Only few of these mills are able to meet the minimum quality standard.

One of the main drawbacks is the inferior surface property of the sheet such as SMOOTHNESS, GLOSS, etc. This results in poor quality of print and excessive amount of fluff generation during offset printing. There is a need to systematically evaluate the surface characteristics of the indigenously manufactured newsprint from recycled fibres and find out the possible ways to improve them. The importance of the problem was recognized by the learned members of the meeting held on 7th Aug 2002 in Udyog Bhavan, New Delhi under the Chairmanship of the Joint Secretary (JS) to discuss BIS specifications for Newsprint manufactured out of Recycled waste paper for determining the eligibility of the concerned mills in Schedule-I to Newsprint Control order 1962. A Para from the minutes of the meeting is reproduced below

"AFTER DETAILED DISCUSSIONS IT WAS DECIDED THAT FOR THE PRESENT, CPPRI MAY TAKE UP A CESS FUNDED PROJECT JOINTLY WITH FOUR OR SIX PAPER MILLS FOR IMPROVING SMOOTHNESS FOR PAPER BASED ON RECYCLED WASTE PAPER. AFTER LOOKING INTO THE RESULTS FUTURE COURSE OF ACTION CAN BE DECIDED".

In pursuance of these recommendations the present project approved by Cess Grant Authority, Govt. of India was taken up. In the present study the process data collected from nine mills was analyzed to study the possibilities of manufacturing better newsprint with improved smoothness. In five mills actual trials were taken to improve the smoothness of newsprint on the production scale.

2. MANUFACTURE OF NEWSPRINT USING RECYCLED FIBRES

Data collected from nine different mills (*Table* 1) in India manufacturing newsprint from waste paper as raw material indicated that generally mixture of old newsprint (ONP), old magazines (OMG), sorted office waste (SOW), mixed colour cuttings (MCC), note books and other chemical pulp containing white papers etc. are used as furnish components. The proportion of each component generally depends on the availability and cost. The general trend is to use ONP in the range 26–30% and remaining is old magazine, office waste and notebooks etc.

Considering the different variety of waste paper in details ONP has a high percentage of mechanical fibre, groundwood or thermo mechanical pulp. In addition to the fibre components of the furnish, additives required for the production of newsprint are also present in ONP ranging from 3 to 12wt%. These include starch, inorganic fillers and dyes for colour control. Ink amount is about 1 to 2 wt% in the ONP furnish.

OMG is a highly variable raw material. The fibre component of the magazine can range from 100% Kraft pulp to 100% groundwood. A single magazine may include coated free sheet, coated groundwood, and uncoated mechanical fibre. Also the additives are also highly variable. Fillers such as clay, alum, precipitated calcium carbonate (PCC) are also present which had been added during the paper making process to improve the sheet characteristics. In magazine stock this inorganic portion of the furnish can range from 10wt% in the uncoated sheet to as high as 50wt% in a sheet that is coated on both sides. Adhesive associated with bindings, thermal plastics and hot melts can all contribute to stickies. Ultraviolet cured inks, common on magazine covers, are

difficult to deink. Ink can range from 1 to 7wt% in magazine grade of waste paper.

Sorted office waste, mixed colour cuttings and notebooks contain mainly chemical pulp as pulp component. Chemical pulp component in indigenous waste contains mainly short fibred pulps like agricultural residues, bamboo and hardwood. Also indigenous papers are acidic sized whereas imported ones are alkaline or neutral sized.

Newspapers are often thought of as a mature form of media that involves little or no modern technology. However, as in the case of papermaking, much technological advancement are occurring at a faster pace than ever. The world-wide newsprint market remains a very large 40 million tones a year grade. There is rapid conversion from the direct plate to paper letterpress process to offset. This conversion of the industry from letterpress began in the late 1960s with many locations installing offset presses in the 1970s. One of the many advantages was the greatly improved print quality of offset vs. letterpress, especially for color graphics. Due to the contact between the press blankets and 100% of the paper surface, these offset presses made sheet linting a major papermaking concern. Today, a 250,000 copy production between press blanket washes is becoming an industry standard.

In the late 80's and into the early 90's, flexographic printing was introduced to newspapers moved to flexo printing. This trend has now mostly stopped, with offset again being the method chosen for new newspapers presses. Technology on offset presses allows much faster operation with actual operating speeds of 70,000 copies per hour.

New presses have greatly increased automation for production efficiency and product quality. These systems include automatic color setting, automatic camera-based registration and compensation setting systems. These high speeds increase the strength demands on the paper as well as lessening the tolerance for defects such as holes and shives in the sheet. High operating speeds has made 50 inches the new standard roll diameter on these presses requiring increased precision in roll winding control.

As well, these rolls must more than ever be received in good condition at customers including not being out of round to allow automatic roll changing at these high speeds. Many new installations feature automated roll handling systems such as high rack storage are using computerized retrieval cranes and robotic-guided vehicles. The demand on suppliers for perfect roll wrapping and scan able roll bar codes becomes a priority.

The major trend over the last 20 years has been the greatly increased use of colour in newspapers for both editorial and advertising. Most new press installation now consist of press lines where many, if not all units, allow twosided, four colour production on stacked tower units. This increased use of colour has changed the demands on newsprint as well. The need for consistent colour between rolls and between mills to produce consistent printed colour has become a major publisher concern. The use of a large percentage of newsprint on four-colour leads, where the sheet is printed in up to eight separate units, increases the wetting of the sheet. This results in increased concerns about dimensional stability of the sheet that causes fan out during printing and sheet curl when the sheet redried.

In the last two years, presses that have the capacity to print a major daily only in straight runs were introduced and became a major part of the new press market. As most newspaper readers realize, page size has been shrinking in the last 15 year. This trend is based on both reader preferences for a smaller, easierto read product, as well as the desire to reduce the paper usage for economic reasons. The current, most common, North American standard is 12.5 inches originally used in Canada at the Toronto Star. To further decrease paper usage, this size is being reduced slightly by many publishers. These new roll widths create challenges for mills to efficiently trim the paper machines designed for previous width standards.

3. NEWSPRINT CHARACTREISTICS GENERALLY SOUGHT BY NEWSPAPER PUBLISHERS

The functional requirements of newsprint are pressroom runnability, Printability, good appearance and low price.

Runnability: Ability to run the web through the presses without break.

Printability: Ability to accept and preserve the imprinted ink pattern with minimum rub off, set off, and show through.

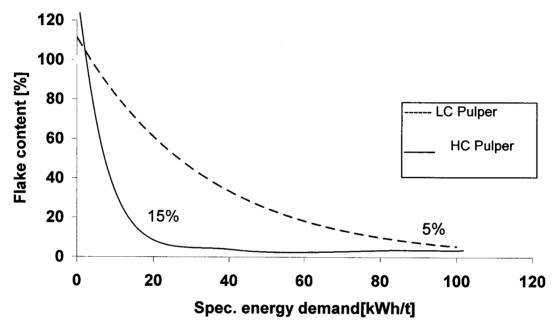
Appearance: Brightness, whiteness, cleanliness, opacity.

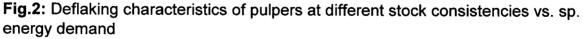
4. STEPS INVOLVED IN MANUFACTURING PROCESS FROM WASTE PAPER AS RAW MATERIAL

The general steps involved are

- Slushing and deflaking
- Screening
- Cleaning
- Dispersion
- Deinking
- Bleaching
- Refining
- Papermaking

The block diagram of process operational steps for nine different mills is given in *Fig. 1* (*Figs. 1.1 to 1.9*). It can be seen that all the mills studied have basically similar machinery set up. In some mills kneaders are also being used.


The different waste paper treatment unit operations are described as below

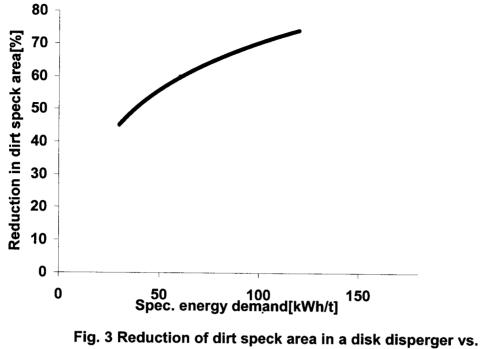

4.1 Slushing and Deflaking

The first step involved in waste paper processing is to break down the raw material into individual fibres as much as possible to form suspension so that at least it can be pumped. Out of nine mills studied, two mills have low consistency (LC) pulper and remaining has high consistency pulper. The pulping consistency

in LC is normally in the range. 5–6 %, mills having high consistency (HC) pulpers operate at 12–20 % stock consistency.

The general trend of fibre dispersion in LC and HC pulper is shown in *Fig.* 2. Clearly, HC pulper give steepest reduction in flake content and are preferred over LC. Old newspapers and magazines or coated grades are preferably slushed using HC pulpers. LC pulper is normally used in recovered paper processing, for the manufacture of packaging paper and board. During slushing/pulping all the mills studied are using sodium hydroxide in the range 0.8-1%, some mills are also using sodium silicate in the range 0.8-1.5%. and the temperature kept is $45-60^{\circ}c$. Different types of deinking chemicals are also used. The chemical composition of deinking chemicals is not clear to mills.

4.2 Screening


Screening is to remove debris and contaminants from recycled fibre pulp. It is primary separation process in processing recovered paper where high debris content places special demand in the screening process. All the mills studied had hole type as well as slot type screening system.

4.3 Dispersion and Kneading

Four of the mills studied had hot dispersion or kneading systems. The primary task of dispersion is

- Reduce dirt specks below the visibility limit
- Break down stickies
- Break down coating and sizing particles
- Detach ink or toner from recycled fibre
- Mix in bleaching agents
- Treat fibre mechanically for retaining or improving their strength characteristics
- Treat fibres thermally to increase the bulk

Dispersion involves application of high shear forces to the fibres and the debris particles to disperse. Kneaders have a horizontal tubular housing with a stock feed chute at one end and outlet at the other. Inside the housing are two or three rotating shafts fitted with kneading elements that also act as impellers. *Fig. 3* shows that how specific energy demand influence dirt speck reduction. High specific energy gives improved results. Mechanical loading at excessively high consistency can cause fibre crinkling in kneading dispersers. One of the mills having kneader was operating it at 30–32 % consistency, which is quite high consistency.

sp. energy demand

4.4 Deinking Floatation

In deinking floatation the principal of selective floatation is used in removing ink particles. The separation criterion is different surface wettability of the particles to be removed and the fibres to be retained. Particles, where surface is or has been hydrophobic i.e. watering repellent, can be floated within a certain size range. These particles included printing inks, stickies, fillers, coating pigments and binders. The mechanism involved in releasing ink particles is probably fibre swelling during slushing, mechanical forces due to friction and the chemical bond loosening. Fibre swelling break ink apart by crack formation. When flakes disintegrate, the ink particles also break down. Mechanical forces remove the ink through friction between fibres. The size range of the free ink particle in a suspension is very wide. Originally the basic size of ink particles (carbon black and pigment) was 0.02–1.0 micrometer. Water based flexographic printing ink agglomerates are 1–5 micrometer. Offset printing ink agglomerates can be up to 100 micrometer. The oxidized ink agglomerates which adhere so strongly to fibres reach size of 500 micrometer and more. For efficient floatation

of the ink particles, their size range must be 10–250 micrometer. Smaller particles require agglomeration into larger ones. They can be accentuated by applying calcium soap.

Floatation system generally operates at stock consistency 0.8-1.5 % and temperature of $40^{\circ}-70^{\circ}$ C. The pH should be about 7 to 9. The relative air load is mostly about 300% and more expressed as total air volume flow to total suspension volume flow. Certain floatation system operates at air load of up to 1000%.

Some imported newspaper coming to India as wastepaper contains water based flexographic ink used during printing. Flexography is mainly used in Italy and to some extent in UK and United States. Saponifiable synthetic dispersion is binders. Because this dispersion is soluble in alkaline environment, the conditions of floatation deinking are insufficient to deink water based flexo printing ink. Flexographic ink is also very small which impaired floatation efficiency. In recent years, several studies have been tried to discover ways to improve the deinkability of water based flexographic ink. Floatation of conventional water based flexographic inks achieve higher level of brightness in slightly acid pH range of 5.5 to 7.0 than alkaline environment.

4.5 Bleaching

Peroxides are the oxidizing bleaching agents used for bleaching of wood containing DIP. All the mills studied are using H_2O_2 during deinking. The practice is sufficient to satisfy the optical demands for newsprint. This operation is not bleaching but a compensation for the avoidance of alkali yellowing.

4.6 Refining

The purpose of refining in recycled fibre processing is to improve the main properties of recycled fibres. In standard newsprint making, refining is partially required to improve strength and net energy demand is less than 50kwh/t. It is surprising to note that all the mills studied are using either double disc or triple disc refiner, which is generally used for virgin pulps.

4.7 Papermaking

The paper machine layout in all the mills studied is fourdrinier type having synthetic type wire. Wet pressing system is similar except in three mills those have press blind drill press and inverse press arrangement. All the mills have similar type of calendering system.

5. QUALITY OF THE NEWSPRINT BEING MANUFACTURED BY THESE MILLS

Nine mills based on the waste paper as raw material were studied. The paper samples were evaluated for different characteristics mentioned under BIS standard 11688/1999 specifications. It was observed that out of the nine mills studied, the newsprint manufactured by two mills met all the requirements of BIS 11688/1999 standard (*Table III*). Newsprint manufactured by the remaining mills meet all other BIS specifications except smoothness. The moisture content are in the range 5 to 6 percent. It is suggested that if newsprint is produced near moisture level 9 to 10 percent instead of 5 to 6, there will be appreciable financial saving .The customer will be quite satisfied to receive newsprint at higher moisture level because of improved runnability. In particular newsprint exhibits improved stretch at higher moisture levels, which enables the sheet to better absorb shock energy without breaking? The effect of moisture content on runnability is shown in *Fig.5.* In pressroom runnability (number of breaks) is directly proportional to (tensile strength)*(Stretch)^{1/2} of newsprint in the machine direction (36).

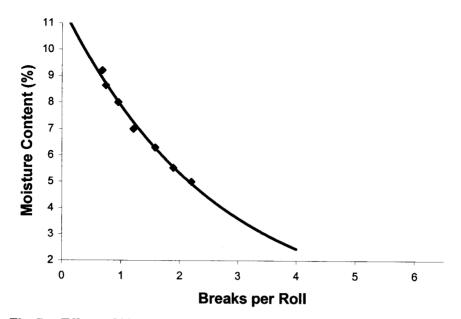


Fig 5 . Effect of Newsprint moisture content on "Relative Pressroom Runnability".

The machinery set up of all the nine mills described above is almost same with variation in operational process parameters. It is clear that the quality of the newsprint manufactured by the remaining seven mills can also be improved by carefully controlling the following unit operations

- Furnish optimization
- Optimization of deinking process
- Calendering

5.1 Furnish optimization

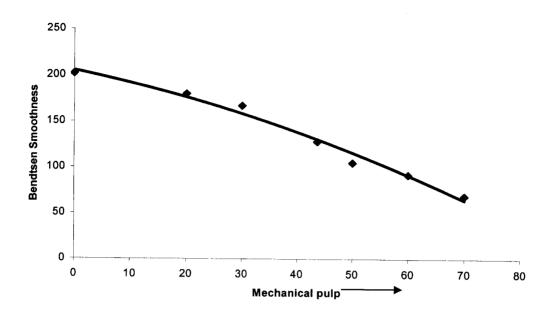
It can be seen from **Table II** that the newsprint samples which satisfied the smoothness requirement were having higher mechanical / chemimechanical pulp content than those samples which were having higher roughness. Laboratory studies carried out indicated that increasing the amount of mechanical pulp in the pulp sample collected from a mill making newsprint from furnish containing ONP, magazine, exercise notebook and office waste showed improvement in smoothness after calendering. The porosity is increased with the amount of mechanical pulp content (*Fig 4*). Reasonable porosity is a requirement of newsprint. In recycling mechanical fibres are not prone to hornification. To some

extent, they even gain in flexibility probably due to internal fibrilation caused by repeated drying and calendering. Mathematical relationship shows how the apparent density and relative bonded area of a fibre network in sheet grow with a dimensional flexibility number F, that is affected by fibre character

$F = (w_f/t_f)(C.w_f.W_{FF})^{1/4}$

Where W_{FF} is fibre flexibility in the wet state

- W_f the width of fibre
- tf the thickness of fibre
- C a constant that depends on the fibre material


Although this formula ignores the importance of fines and fillers, it does show the effect on recycling. The apparent density and relative bonded area of a fibre network grow when the thickness of fibres decreases due to flattening. The increasing proportion of recycling chemical fibres affects the sheet density more strongly than any change in mechanical fibres because they are flat and their flexibility value in wet state is more. Despite hornification, the flexibility of chemical fibres will increase by outer damage (twisting and kinking). When DIP replaces mechanical pulp, the reduced thickness compared with the virgin fibre sheet will show declining rigidity as the stiffness is related to thickness as formula

 $S = E/t^{3}12$

Where E is the elasticity modulus

t the thickness of the sheet.

Newsprint is printing paper segment in which the use of DIP is particularly well established abroad. Newsprint with DIP content of 100% is almost standard in some regions. The progress in deinking and paper making technology has eliminated the disadvantages in runnability and appearance of the sheet.

ĺ

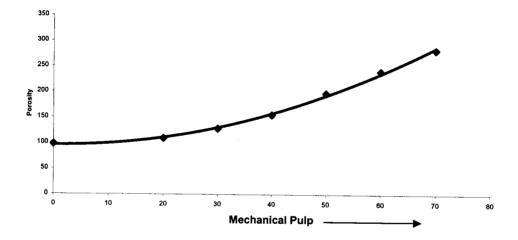


Fig. 4: Effect of increasing Mechanical pulp on Smoothness and Porosity of Newsprint.

The problem with the medium scale paper mills in India is the improper selection of the furnish components. It can be seen that notebook, office waste are the major component of waste paper in the manufacture of newsprint. These mainly consist of chemical pulp. Generally the excess amount of chemical pulp adversely affects the printing characteristics. Also in Indian waste papers, agricultural residues, bagasse and hardwood are the major components in papermaking. Such fibres are short fibres containing lot of fines like parenchyma cells and vessel elements. Such fibres on recycling give relatively more hornification than wood pulps. Such fibres on reuse may give paper of relatively poor smoothness. Also the proportion of chemical pulp in DIP based newsprint is more and also filler content is higher. The smoothness for such type of paper can better be controlled by lighter calendering, than virgin mechanical fibres. Generally the resistance against compression in a calender is small with chemical fibre and flat mechanical fibres.

6.0 STUDIES ON LABORATORY CALENDERING OF WASTE PAPER CONTAINING NEWSPRINT

Newsprint is calendered on the paper machine with an on line calender. Traditionally this is done with a 4 to 6 roll hard nip calender. Typically, newsprint paper machine with linear load 80–110 kN/m and thermo roll water temperature are 80 to 120 degree centigrade.

As the waste paper containing newsprint normally has higher ash content due to raw material, the steps to improve the surface characteristics should be chosen in such a way that strength of the paper be not adversely affected. Newsprint samples of three mills not confirming in smoothness were subjected to two types of calendering i.e. hard nip calendering (40 kN/m) and soft nip calendering (40 kN/m at 90°C). It was observed that soft nip calendering improve the paper surface relatively more than hard nip calendering. The adverse effect on thickness, tensile strength, specific scattering coefficient was relatively lower in soft nip calendering. The smoothness level was improved to BIS standard and also linting tendency got reduced as shown by lower value of LRC (*Table III*).

-

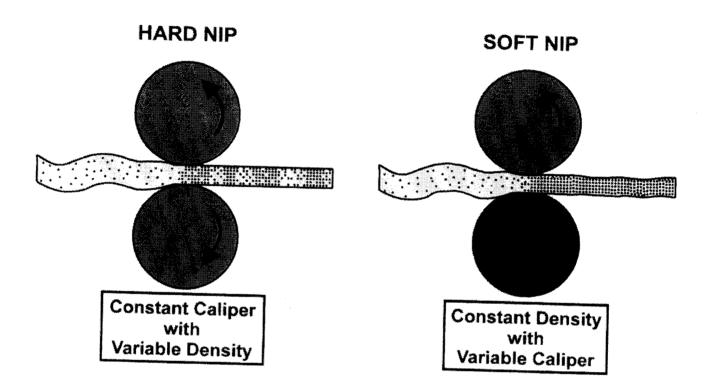
This is probably due to the reason that pressure applied to the sheet in soft nip calendering which may also helps in thermal bonding between the mechanical pulp fibres.

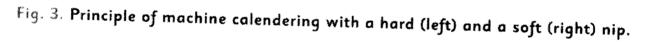
As most of the newsprint mill based on waste paper as raw material have slow speed machines, so it is possible that by installing soft calenders the product quality can further be improved. Also with the increased production of newsprint based on deinked fibres world over lot of improvements in the soft nip calender technology is going on.

The benefits of soft nip calendering of newsprint can be divided into two main categories

- Runnability
- Printability

A soft calendered DIP sheet will have a superior runnability in the printing press due to following reasons


- A DIP based sheet is less affected by changes in moisture compared to virgin fibre sheet as the fibres swell less
- The strength of the soft calendered sheet is higher at the same smoothness level than a machine calendered sheet
- The soft calendered sheet has less linting


Maintaining sufficient strength in web to ensure runnability in printing press is important if ash content of the DIP sheet is high due to raw material.

A soft calendered sheet has better printability than machine calendered sheet

- Sheet surface density as well as ink absorption is more uniform
- Print mottling is reduced
- Smooth sheet can be calendered at a high moisture level without blackening

In hard nip calendering process, the web is processed together between hard, unyielding rolls. Because of the unyielding rolls, the paper is calipered to an equal thickness. As a result the flocs are more heavily densified than the thinner area of the paper (*Fig. 6*).

This induces local density variation which lead to the familiar problems of mottling, strength losses and in extreme cases, blackening. In a soft nip or multi nip calender the paper is calendered in the nips, which are formed by, chilled iron and a resilient roll. While assign through the nip, the paper undergoes more equal densification due to elasticity of the roll cover. This means that the soft cover distributes the compressive stress in the nip more equally over the thicker and thinner part of paper and mottling is distinctly reduced. The soft roll cover material has an effect on the uniformity of the compressive stress in the nip. The lower the roll dynamic elastic modulus (softer) of the roll is, the more uniform calendering result is achieved.

Today, technology for newsprint grade is progressively moving towards soft calendering. Typical running conditions for newsprint soft calender that use a DIP base are from 20 to 80 kN/m in two soft nip and a temperature of 80°C–100°C. In some cases, even one soft calender nip is enough depending on paper two sidedness. As presently the soft nip calendering arrangement is only available in one or two mills in India which are manufacturing good quality of printing papers from chemical pulp. The medium scale paper mills manufacturing newsprint from waste paper have hard nip calenders. So the possibilities of improving the surface characteristics of newsprint using hard nip calendering was also tried in the laboratory.

The parameters studied were

- Effect of loading pressure
- Effect of loading temperature
- Effect of moisture content

To increase the moisture content in paper a fine water spray on the paper just prior to calendering was done. The water spray was sufficient to increase 1.5 % moisture content in the paper whose initial moisture content was 7.0%. During this operation the roll was heated to 120°C temperature. The moisture content of the paper after calendering was kept same as initial. The results indicated that increasing the calendering pressure from 80 kN/m to 160 kN/m has shown improvement in smoothness however there is a reduction in tensile strength to the extent of 63%. On increasing the temperature from 60° to 80°C there was further improvement in smoothness however there was further reduction in tensile strength. But when the calendering was carried out after fine water spray at temperature close to 120°C, an appreciable improvement in smoothness with lesser reduction in tensile strength, specific scattering coefficient was observed. Also there was improvement in gloss (*Table IV*).

The print quality can further be expected to improve for newsprint manufactured by medium mills if attempts are made to improve the CD profile and formation. It can be seen that the newsprint is having wide variation in thickness (*Table III*). The sample with lesser deviation in the thickness has better smoothness. Also the formation is relatively better.

The mills studied have double disc refiners in their stock preparation section, which sometimes is not suitable, for wastepaper furnishes. The recycled fibre is more sensitive to errors in refining than virgin fibres. It has been weakened and undergoes irreversible change. If not refined in correct way the results can be disastrous. Undesired effects - increased drainage resistance and major reduction in fibre length and tearing strength can be avoided by selecting refining equipment and conditions correctly. The best way to develop bonding ability is by moderate low consistency refining which is also able to straighten curly and kinky fibres. The conflow refiner are generally more suitable for such treatment. The conflow refiner concept was developed to perform gentle and fibre saving refining. In other words to develop the bonding ability of fibre with a minimum decrease in fibre length. The other targets such as low energy consumption and easy maintenance are also met. The hornfication of chemical pulp component which is about 40-50% in waste paper newsprint their furnish may also lead to insufficient fibre bonding. The other cause may be that the newsprint is made of waste papers containing short fibred pulps like agricultural residues, bagasse and hardwood, which are major raw material for Indian mills. All these fibres have small diameter and thick cell walls. Due to this, the sheet tends to be more rigid and form weak, bulky paper on recycling. Recycled fibres have passed through the paper making process at least once, with intensive

pressure and drying in pulp. Drying has created collapsed fibres and caused irreversible changes. Due to this, the swelling and bonding ability of recycled fibres is considerably reduced. The other reason may be due to improper pressing and drying during papermaking. Sometimes high intensity wet pressing creates density and moisture gradient in paper, which in turn results in fibre having very different moisture and stress histories, since some fibre had more of water removal by mechanical densification than by evaporation. Any subsequent treatment of the paper surface with water can result in out of plane disturbance in areas where fibres with different histories are adjacent.

7.0 EFFECT OF DIFFERENT PROCESS VARIABLES ON DEINKING OF NEWSPRINT FURNISH

Waste paper stock is a complex mixture of fibres, fibre fines, fillers, sizing chemicals, ink particles, retention aids and slimicides etc. Different process variable affects the deinking by interacting in different ways. The effect of seven selected process variables on deinking of waste paper was studied. The seven-process variable affecting the deinking expressed by residual ink, dirt count and brightness in decreasing order are

- Consistency
- Caustic dose
- Temperature
- Deinking chemical dose
- Sodium silicate dose
- Time
- Hydrogen peroxide dose

The relative effect of seven process variables on waste paper pulp has been studied using a Plackett-Burman statistical design.

In this type of experimental design, two levels (low and high) of each variable were selected as given in *Table V*.

S. No.	Process variable	Process variable conditions		
		Low level	High level	
Α.	Caustic dose(%)	0.3	1.1	
В.	Sodium silicate dose(%)	0.3	1.9	
C.	Temperature (⁰ C)	40	70	
D.	Consistency(%)	6	15	
E.	Deinking chemical INDI(%)	0.05	0.3	
F.	Hydrogen Peroxide (%)	1	3	
G.	Time (minutes.)	10	20	

Table V: Process variables used in the experiments.

The high (+) and low (-) levels are chosen far enough apart to expect a significant response in deinking properties, but not so remote from normal deinking conditions usually practice in mills. The assumption made was that within the restricted range of each variable, the response is entirely linear.

Table VI shows the combination of deinking conditions for waste paper used in experimental set up.

Table VI: Deinking conditions used in accordance to Plackett–Burman design.

Exp. No.	Process variable							
_	Α	В	С	D	E	F	G	
1.	+	+	+		+			
2.	_	+	+	+	_	+	<u> </u>	
3.		_	+	+	+	_	+	
4.	+	_		+	+	+		
5.	_	+	_	_	+	+	+	
6.	+	_	+			+	+	
7.	+	+	_	+	_		+	
8.	_	_	_	_	_	_	·	

The deinkability of pulp was evaluated by Brightness; residual ink and dirt count is given in *Table VII*.

experiments.	•							
Expt no.	1	2	3	4	5	6	7	8
Brightness	51.8	50.8	49.9	48.8	51.3	50.8	46.9	50.8
				1				
Residual ink	251	324	332	360	289	281	542	350
Dirt count	134	22	26	28	150	199	17	1062

Table VII : Brightness, residual ink and dirt count values for different experiments.

The main effect of process variable as properties - brightness, residual ink and dirt count was calculated and ranked accordingly (*Table VIII*).

			-	
S.No.	Process	Brightness	Residual ink	Dirt count
	variable			
A.	Caustic dose	-2.3 (3)	-10.2 (6)	-107.6 (4)
В.	Sod. Silicate dose	0.2 (7)	-6.3 (7)	–120.6 (2)
C.	Temperature	2.8 (2)	-25.8 (2)	-106.8 (6)
D.	Consistency	4.1 (1)	-28.4 (1)	–177.1 (1)
E.	Deinking chemical	1.8 (4)	–19.5 (3)	–117.3 (3)
F.	Hydrogen peroxide	1.2 (6)	-16.3(4)	-102.4 (7)
G.	Time	-1.6 (5)	11.7 (5)	-104.1 (5)

Table VIII: Main effect of process variable on deinking

The results indicated that the variables mainly affecting the brightness are consistency, temperature, caustic dose and deinking chemical.

7.1 Relative effect of major process variables

Table IX shows the major influential process variables and then effect on deinking. The effect has been expressed as % of the mean value. The demonstrates deinking is mainly affected by consistency, temperature and deinking chemical. The higher consistency and higher temperature helps in better deinking.

Property	Process variable	Main effect as % of				
		mean				
Brightness	Consistency	8.2				
	Temperature	5.6				
	Caustic Dose	-4.6				
	Deinking chemical	3.6				
Residual ink	Consistency	-2.5				
	Temperature	-7.6				
	Caustic Dose	-5.7				
	Deinking chemical	-4.8				
Dirt count	Consistency –86.4					
	Temperature -58.8					
	Caustic Dose –57.2					
	Deinking chemical	-52.5				

Table IX: Most influential process variables for deinking

The caustic dose gives negative effect on brightness and dirt count. This indicated that to get better deinking effect for the furnish of newsprint the following are required.

- High consistency
- High temperature
- Shorter treatment time
- Optimum deinking chemical

The optimum repulping conditions for the paper furnish containing ONP/OMG waste paper furnish in the ratio 2:1 is 1% sodium hydroxide, 1.6% sodium silicate,0.2 % INDI deinking chemical (or 0.9% Serfax), stock consistency 15% at 50 degree centigrade temperature and pH 9–11 for 15 minutes.

The optimum conditions in floatation cell are Stock consistency 1 to 1.3 %, pH 9 to 10 and hardness 12 to 20 DH. The hardness should be maintained in the floating cell by adding required amount of calcium chloride.

The optimum bleaching conditions are Sodium hydroxide 1% Sodium silicate 1.5%, hydrogen peroxide 1.5%, EDTA 0.05%, temperature 60 degree centigrade, pH 9 to 11 and time 60 minutes. The pulp after bleaching should be treated with sulphuric acid to adjust the pH to less than 7.

Property	IS:11688/1999 specifications			>	alues obt	Values obtained for the mills	erty IS:11688/1999 Values obtained for the mills specifications			
		Ţ	7	ę	4	Q	9	~	ω	0
Grammage (g/m ²⁾	40 to 52± 4%	50.0	50.2	49.3	47.3	52.1	50.0	46.3	50.64	49.2
Thickness (micron)	56 tọ 90 ±4%	75	74	61	72	75	73	69	74	68
Range		56-78	61–79	57–65	68–77	6479	66–74	60–72	62–69	65–74
Brightness (%)	52.0 min.	52.2	56.5	52.9	55.5	62.5	54.7	55.4	54.1	67.1
Opacity (%)	90.0 min.	96.7	95.1	90.8	95.5	95.0	93.8	96.1	96.1	92.4
Smoothness Bendtsen (ml/min)										
Тор	250 max.	370	344	118	218	350	277	293	297	278
Wire	300 max.	490	485	138	236	400	413	413	400	380
Porosity Bendtsen (ml/min)	800max.	062	469	359	259	470	278	550	330	440

28.0	40.0	4.50	Specky	55	46	54
26.0	62.0	5.90	Specky	50	48	52
22.0	36.5	5.30	Not Specky	54	65	35
22.0	41.0	5.85	Specky	48	50	50
20.0	38.5	5.75	Not specky	45	43	57
18.0	46.0	5.70	Not specky	68	61	39
26.0	36.5	6.10	Not specky	64	59	40
18.5	43.5	5.45	specky	38	41	59
19.0	48.5	5.70	specky	43	40	60
15.0 min.	35.0 min.	4.50 min.			c	
Tensile index (N.m/g) ` CD	MD	Tear index (mN.m ² /g) CD	Paper appearance (Specky/ Notspecky)	Formation Index (Paprican)	Furnisn Composition Mechanical / chemimechanical	(%) Pulp Chemical pulp(%)

25

Property	Values obtained for					
	Uncalendered	Hardnip calendered	Softnip calendered			
MILL 1			69			
Thickness (micron)	75	57				
Smoothness,						
Bendtsen (ml/min)	370	210	180			
Тор	490	275	240			
Wire						
Tensile index (N.m/g)						
CD	19.0	12.2	17.5			
MD	48.5	29.5	41.5			
Fibre rising test						
LRC	48	30	10			
(mm/m) SRA(mm²/m)	14.1	9.0	6.0			
Sp.Scatt coeff (m²/kg)	50.1	36.4	48.5			
Brightness (%)	55.7	52.5	54.8			
Print uniformity index	36	40	60			
MILL 2						
Thickness (micron)	74	59	68			
Smoothness,						
Bendtsen (ml/min)	344	220	200			
Тор	485	285	230			
Wire						
Tensile index (N.m/g)						
CD	18.5	15.0	17.5			
MD	43.5	35.5	40.5			
Fibre rising test						
LRC (mm/m)	46	32	15			
SRA(mm ² /m)	12.9	9.4	7.2			
Sp.Scatt coeff	39.8	29.5	38.4			
(m²/kg)						
Brightness (%)	56.5	53.0	54.9			
Print uniformity index	45	55	65			

Table III: Effect of different types of calendering on surface characteristicsOf newsprint made from waste paper

Cont.

MILL 3			
Thickness (micron)	73	58	70
Smoothness,			
Bendtsen (ml/min)			
Тор	350	240	200
Wire	400	340	310
Tensile index (N.m/g)			
CD	20.0	17.5	19.0
MD	38.5	35.5	37.0
Fibre rising test			
LRC (mm/m)	48	30	14
SRA(mm²/m)	14.4	9.6	7.1
Sp.Scatt coeff (m ² /kg)	40.6	29.8	37.5
Brightness (%)	62.5	58.5	61.6
Print uniformity index	50	55	65

Table IV: Hard nip	calendering of	newsprint using	different conditions.

Pressure	Temp (°C)	Bulk (cm ³ /g)	Smoothness Bendtsen	Tensile index	Sp. Scatt.	Gloss (%)
(kN/m)					Coeff.	
			(ml/min)	(N.m/g)	(m²/kg)	
0	60	2.38	1530	48.0	54.5	3.8
80	60	1.71	290	35.0	52.5	6.5
120	60	1.54	175	28.0	51.5	7.2
160	60	1.48	165	18.0	50.5	8.0
80	80	1.55	250	34.0	52.5	8.1
120	80	1.40	150	26.0	48.5	8.8
40*	120	1.70	230	39.5	53.8	9.4
80*	120	1.60	130	37.5	52.1	9.8

* Water spray on the sheet

7.2 Deinking Trials

In general, the newsprint produced by medium scale Indian Paper Mills based on waste paper has been observed to be specky. The specks are mainly the ink particles. All the seven mills studied have deinking cells; still the paper was having excessive specks. This implies that the pulping/ deinking operations are not probably properly optimized. Different mills are using different chemicals like sodium hydroxide, sodium silicate, hydrogen peroxide and deinking chemicals. To optimize the deinking conditions for newsprint furnishes different laboratory deinking trials were conducted using Lamort deinking cell. Different deinking chemicals collected from mills were tried.

The deinkability was evaluated using following two parameters.

- Deinkability factor

- Residual ink value

Deinkability factor DEM was calculated from ISO brightness (R_{457}) of the unprinted deinked pulp (US) i.e. made from unprinted paper subjected to deinking process, the printed undeinked pulp (BS) and deinked pulp (DS) using formulas

 $\mathsf{DEM} = \frac{\mathsf{Brightness}(\mathsf{DS}) - \mathsf{Brightness}(\mathsf{BS})}{\mathsf{Brightness}(\mathsf{US}) - \mathsf{Brightness}(\mathsf{BS})} \times 100$

A value of 100% describes complete removal of the printing ink.

Results indicated that deinkability could be improved by using proper deinking chemicals (*Table V*).

Chemical	Chemical	Deinkability	Deinkability	Pulp
	dose (%)	factor (%)	by residual	appearance
			ink method	
			(%)	
Mill —I	0.03	65	58	Specky
Mill —II	0.03	60	51	Specky
Chemical imported A	0.01	80	85	Specky
Chemical imported B	0.01	94	93	Free from specks
Chemical imported B	0.01	96	95	Free from specks

Table X: Deinkability of pulps using different deinking chemicals.

7.3 Deinkability of Indian newspapers vs. foreign newspapers

The printing of newspaper is normally by web offset printing without thermal drying (Cold set). The inks therefore do not contain large proportion of oxidative drying oils or mineral oils. The mineral oils contained therein absorb quickly on the paper and leave resin and the pigment bound on the paper surface. It has been observed that when ink amount in printing is less then proportional amount of ink pigment compared to ink oil is constant through the paper, but when the ink amount is more then oil separates from the pigment and the oil is penetrated deeper into the paper. Printed materials of this type in a fresh, unaged state are usually easily deinkable. Conventional flexographic print is poorly deinkable. In most commonly used alkaline floatation deinking process the binder of water based flexographic inks (usually acrylate resins) dissolves in finely distributed manner. This release very small ink particles that remain equally with the fiber stock and the filtrate. Due to their small particle size, wash deinking will more effectively remove flexographic inks. Ink manufactures are trying to improve the floatation deinkability of flexographic inks for newspaper printing.

In India, the mill is using Indian newspapers as well newspapers (ONP) imported from other countries. During the investigations it was observed that deinkability of foreign newspapers is comparatively easy as compared to Indian newspapers especially printed in local languages. These newspapers have ink containing comparatively higher amount of oil. So to get proper deinking in such case, it is important that the deinking chemical to be used should be of special nature. Different deinking chemical having chemical composition

- Sodium soap of fatty acid and sodium silicate (A).
- Sodium soap of fatty acid with copolymer based on ethylene propylene oxide plus emulsifier (B).

were tried. It was observed that chemical of B type gave best deinkability (*Table* X). The probable reason is that besides the action of soaps as droppers of ink and foam formation, the copolymer helps to kidnap the ink particles and make them float hence better elimination with foam. Clearly by usage of proper deinking chemical it will be possible to get better-deinked pulp for newsprint manufacturer.

7.4 Impact of raw material quality and storage on deinking performance

In addition to process design and chemistry, raw material quality plays an important role in the performance of deinking. The composition of waste papers and age are the most important factors affecting the ink removal efficiency, yield and final pulp properties. In comparison to raw material dominator by ONP, a high rates provides higher initial brightness, easier ink detachment and removal and less sensitivity to aging. The main drawback of raw material with high ash content is the low process yield due to the selectivity of floatation towards fillers.

The effect of ageing on the brightness after deinking of offset printed newsprints having different ash contents (ranging 0.5 to 8%) is depicted in Fig a. The type of ink used in printing was a type that dried by oxidation. The resulting brightness obtained in case of freshly printed deinking was only 2–3% lower in brightness. The values decreased with age and low ash content.

The loss of brightness due to the aging period is considerably lossing in the case of offset ink that do not contain component that dry by oxidation. The deinkiability of newspapers printed by the letterpress process shows a lower effect of age.

Besides being influenced by the printing process used (heat set offset or rotogravure), the effect of aging on deinkiability of magazines is a function of use of uncoated or coated paper. Offset and rotogravure inks printed on coated paper detach easily even after aging resulting in an adequate deinkability. The aging of uncoated magazine paper causes a significant reduction in the deinkability of offset inks and has less influence on the deinkability of rotogravure inks.

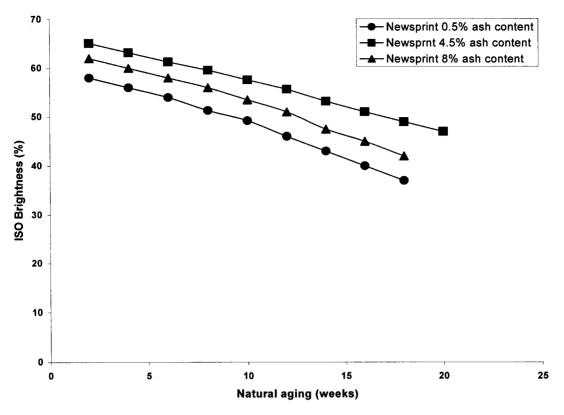


Fig. a: Effect on brightness after flotation deinking for different newsprint

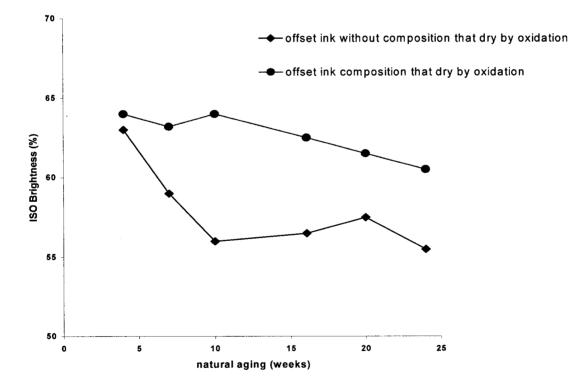


Fig a: Brightness of wood-containing deinking material after flotation deinking influenced by natural aging

7.5 Evaluation of yield

One of the major queries raised during the mill a visit was that the method of evaluating the yield. Different experiments have shown that the yield can be evaluated quite satisfactorily using following formula; the deinked pulp of yield can be evaluated

Yield (%) = $(1 - (A_b - A_a))/(A_r - A_a) \times 100$

Where A_b = Ash content of flow (floatation inlet)

 A_a = Ash content of accept (floatation accept)

 A_r = Ash content of reject (floatation foam)

The ash content is measured to 500[°] C temperatures. This formula can also be used to evaluate the industrial RCF process yield. For this pulping outlet, final pulp and rejects ash content data is used. However the formula derived already does not take into consideration the impact of dilution water and chemical, so slight variation can be expected.

8.0 CASE STUDY I

A team of CPPRI scientists visited the mill selected for conducting actual trial on the production scale. The mill was producing newsprint from waste paper and was lacking BIS standard for following parameters

- Presence of excessive ink speck
- Higher roughness

The block layout of the unit operation of mill is given in *Fig. 1.1*. The mill was using 20% ONP, 40% old magazine and remaining notebooks and office waste. The characteristics of the newsprint sample manufactured by the mill are given in *Table II*. Flow sheet diagram of the mill indicates that the mill has all the unit operations, which are generally required in a good waste paper treatment mill. So the optimization of the different unit operation was carried out. The following steps were done

- Deinking cell was adjusted to 1.5% Cy, temperature 60°C and pH 8.0.
 The air load which is expressed as total air volume to total suspension volume was adjusted to 400%
- Kneader consistency got reduced from 32% to 25% to avoid fibre crinkling
- Refining action in TDR refiners got reduced to avoid excessive cutting
- Cationic starch about 0.5% added in stock preparation
- Nip loading is first press got increased by 5%
- Usage of alum to get back water pH 5.5–6.0

The newsprint thus produced was found to be having smoothness satisfying BIS standard (*Table XI*). This probably due to better retention of fines, avoiding excessive damage of fibres in kneading and refining.

Still better newsprint quality maybe expected if following steps be adopted

- TDR refiners be replaced with conflow type refiner
- Soft nip calendering instead of hard nip calendering

Property	IS:11688/1999 specifications	Values of	btained
		Before	After
Grammage (g/m ²⁾	40 to 52± 4%	50.0	49.5
Thickness (micron)	56 to 90±4%	75	76
Range		56-78	65–78
Brightness (%)	52.0 min.	52.2	52.6
Opacity (%)	90.0 min.	96.7	93.7
Smoothness Bendtsen (ml/min)			
Тор	250 max.	370	235
Wire	300 max.	490	275
Porosity Bendtsen (ml/min)	800max.	790	760
Tensile index (N.m/g)			
	15.0 min.	19.0	25.5
CD	35.0 min.	48.5	44.5
MD			
Tear index (mN.m²/g)			
	4.50 min.	5.70	6.8
CD			
Paper appearance (Specky/ Notspecky)	_	Specky	Not Speck
Formation Index (Paprican) Furnish Composition		43	55
Mechanical / chemimechanical (%) Pulp		40	60
Chemical pulp(%)		60	40

Table XI: Characteristics of newsprint before and after modification at mill.

9.0 CASE STUDY II

A team of CPPRI scientist visited the mill selected for conducting actual trial on the production scale. The mill was producing newsprint from waste paper and was lacking BIS standards for following parameters.

- Presence of excessive inks specks.
- Higher Roughness
- Low Tear index
- Slightly low Opacity

The general process layout of the mill was given in Fig. .1.6. The mill was using 30% ONP, 30–33% special record and 30–33% exercise book. The characteristics of the newsprint sample manufactured by the mill are given in *Table XII*. Flow sheet diagram of the mill indicates that the mill has all the unit operations, which are generally required in good waste paper treatment mill. So the optimization of different unit operations was carried out. The following steps were done.

- The amount of special record paper was increased from existing 30–33% to 40–45% and the amount of exercise books was reduced in furnish.
- The consistency of hydrapulper is increased to 15% from running 12% and the cooking time also increased by half an hour.
- In pulping 1% caustic on o.d. basis was used against only the sodium silicate being used by the mill.
- Refining action in DDR refiner reduced to avoid excess cutting.
- The reject flow rate of primary and secondary centricleaners was increased to clean the pulp from specks.
- Soap stone about 5% added in the stock.
- Steam shower was given to paper before calendering.
- Dryer temperature at final group was reduced by 8° C.

The newsprint thus produced was found to be having properties satisfying BIS standard (*Table XI*). This probably due to increased fibre strength, better

moisture control at dryers and avoiding excessive damage of fibers in refining. Still better newsprint quality may be expected if following steps were adopted.

- DDR refiner should be replaced with Conflow refiner.
- Installation of one more centricleaning system in approach flow of paper machine.
- Soft nip calendering instead of hard nip calendering.

Property	IS:11688/1999 specifications	Values obtaine	ed
		Before	After
Grammage (g/m ²⁾	40 to 52± 4%	49.2	49.4
Thickness (micron) Range	56 to 90±4%	78 70–79	81 77–81
Brightness (%)	52.0 min.	54.5	52.1
Opacity (%)	90.0 min.	89.5	95.4
Smoothness Bendtsen (ml/min) Top Wire	250 max. 300 max.	270 400	240 290
Porosity Bendtsen (ml/min)	800max.	350	310
Tensile index (N.m/g) CD MD	15.0 min. 35.0 min.	16.5 35.5	21.0 37.0
Tear index (mN.m ² /g) CD Paper appearance	4.50 min. –	4.00 Specky	5.10 Not specky
(Specky/ Notspecky) Formation Index (Paprican) Furnish	_	42	58
Composition Mechanical / chemimechanical (%) Pulp	_	38	55
Chemical pulp(%)		62	45

Table XII: Characteristics of newsprint before and after modification at mill.

10.0 CASE STUDY III

A team of CPPRI scientists visited the mill selected for conducting actual trial on the production scale. The mill was producing newsprint from waste paper and was lacking BIS standards for surface smoothness.

li

The block layout of the unit operation of mill is given in *Fig. 2.7*. The mill was using ONP 70% (70% indigenous and 30% imported) and mixed cutting 30%. The characteristics of the newsprint sample manufactured in the mill are given in *Table II*. Flow sheet diagram of the mill indicates that the mill has all the unit operations, which are generally required in a good waste paper treatment mill. The unit operation conditions were optimum. The mill was suggested to

- slightly increase refining
- Increase loading pressure on the calender keeping in view that it does not adversely affect the brightness.

The newsprint thus produced was found to have smoothness satisfying BIS standard (*Table XIII*).

Property	IS:11688/1999 specifications	Values o	btained
		Before	After
Grammage (g/m ²⁾	40 to 52± 4%	46.3	47.7
Thickness (micron)	56 to 90 ±4%	6 9	62
Range		60–72	64–69
Brightness (%)	52.0 min.	55.4	52.4
Opacity (%)	90.0 min.	96.1	93.3
Smoothness Bendtsen (ml/min)			
Тор	250 max.	29 3	211
Wire	300 max.	413	252
Porosity Bendtsen (ml/min)	800max.	5 50	187
Tensile index (N.m/g)			
CD	15.0 min.	22 .0	22.5
MD	35.0 min.	36 .5	55.0
Tear index (mN.m²/g)			
CD	4.50 min.	5. 30	5.50
Paper appearance (Specky/ Notspecky)	-	Not Specky	Not specky
Formation Index (Paprican)	-	54	59

Table XIII: Characteristics of newsprint before and after modification at mill.

11.0 CASE STUDY IV

A team of CPPRI scientists visited the mill, which was producing newsprint from waste paper and the paper was lacking BIS standard for

- The paper was specky.
- Surface smoothness was lower.

The block layout of the unit operations of mill is given in Fig.2.8. The mill was using 40% ONP, 20% coated book stock, 30% exercise note book and 10% fly leaf cutting. Flow diagram of the mill indicated that mill has Lamort Helico pulper with Andritz centrifugal screens and Lamort Macell (five stages) deinking cell. The characteristics of newsprint being manufactured are given in *Table XIV*. To reduce the ink specks the deinking cell functioning was optimized and to improve smoothness the loss of fines was controlled. The newsprint produced after modification was of better quality conforming to BIS standard.

Property		IS:11688/1999 specifications	Values	obtained
			Before	After
Grammag	le (g/m ²⁾	40 to 52± 4%	5 0.6	45.3
Thickness	(micron)	56 to 90% ± 4%	74	64
Range			69–79	60–66
Brightness	s (%)	52.0 min.	54.1	56.1
Opacity (%	6)	90.0 min.	92 .6	92.1
Smoothne Bendtsen				
Т	ор	250 max.	2 97	230
M	/ire	300 max.	40 0	255
Porosity (ml/min)	Bendtsen	800max.	3 30	182
Tensile ind	dex (N.m/g)			
С	D	15.0 min.	26 .0	20.5
N	ID	35.0 min.	62 .0	67.0
Tear index	(mN.m²/g)			
	CD	4.50 min.	5.90	5.40
Paper app (Specky/ N	lotspecky)	_	Specky	Not specky
Formation (Paprican)	Index	_	60	75

Table XIV: Characteristics of newsprint before and after modification at mill.

12.0 CASE STUDY V

CPPRI scientists visited the mill, which was producing newsprint from waste paper, and the paper was lacking BIS standard for

- The paper was specky
- Surface smoothness was lower

The block layout of the unit operation of mill is given in Fig. 2.9. The mill was using 30% ONP, 30% white records, 20% text book, 20% mixed cover cutting. The characteristics of the newsprint being manufactured are given in *Table XV*. To reduce the ink speck the deinking chemical was changed and to improve smoothness the ONP content was increased from 30% to 5%. The newsprint produced after modification was of better quality conforming to BIS standard.

Property	IS:11688/1999 specifications	Values	obtained
	speemeaterie	Before	After
Grammage (g/m ²⁾	40 to 5 <u>2±</u> 4%	49.2	49.0
Thickness (micron)	56 to 90±4%	68	71
Range		65–74	66–69
Brightness (%)	52.0 min.	67.1	65.1
Opacity (%)	90.0 min.	90.1	90.8
Smoothness Bendtsen (ml/min)			
Тор	250 max.	278	141
Wire	300 max.	380	173
Porosity Bendtsen (ml/min)	800max.	920	355
Tensile index (N.m/g)			
CD	15.0 min.	28.0	31.0
MD	35.0 min.	4 0.0	49.0
Tear index (mN.m ² /g)			
CD	4.50 min.	4.55	4.75
Paper appearance	_	Specky	Not Specky
(Specky/ Notspecky) Formation Index (Paprican)	_	54	66

Table XV: Characteristics of newsprint before and after modification at mill

13.0 RETENTION AID

Generally it has been observed in the mills manufacturing newsprint from waste paper that not proper attention is paid to the retention of fines. The effect of retention of fines on the surface properties was evaluated in the laboratory with DFS – 03 dynamic filtration system using alum, poly aluminum chloride (PAC) and retention aid (polyethylene amine type) as wet end chemical. The results are recovered in *Table XVI*

Properties	Blank	0.2% Alum	0.6% Alum	0.2% PAC	0.6% PAC	0.2% Retention Aid	0.6% Retention Aid
Bulk(cm ³ /g)	1.69 (1.16)	1.70 (1.18)	1.72 (1.19)	1.73 (1.19)	1.73 (1.19)	1.74 (1.21)	1.74 (1.22)
Porosity, ml/min	883	8 32	836	835	806	823	761
Roughness, Bendtsen (ml/min)	171 (30)	164 (29)	155 (28)	155 (27)	151 (25)	151 (23)	144 (20)
Sp. Scatt. Coeff.	53.5 (48.1)	54.1 (50.8)	54.8 (51.2)	54.7 (51.8)	55.1 (52.0)	56.6 (54.0)	57.9 (55.9)
Ash Content (%)	9.8	10.1	10.4	10.5	10.7	11.8	11.9

Figure in parenthesis are the values obtained after calendaring.

Clearly retention of fines is helpful in improving the smoothness, porosity and Sp. Scattering co-efficient including bulk. The improvement is maintained after calendaring also. So paper mills should use proper retention aid.

14.0 CONCLUSIONS

- 1. The quality of newsprint being manufactured from waste papers by medium scale paper mills can be improved by systematic optimization of different process unit operations provided the mill has proper Deinking system, Screening system, Calendering.
- 2. Foreign printed newspapers are comparatively easy to deink as compared to Indian newspapers especially the papers printed in local languages. This is

probably due to excessive amount of oil content in the printing inks in latter. The unaged newspapers are relatively easy to deink.

- 3. The deinking chemicals being used by the mills need proper evaluation and selection. The chemicals suitable for Indian papers should preferably have sodium soap of fatty acid and copolymers.
- 4. To get proper bulk, opacity and smoothness in newsprint the waste paper selection should be in such a way that the final furnishes content contains at least 50 % mechanical pulp content.
- 5. High consistency pulper (HC) should be preferred over low consistency pulper (LC) for newsprint manufacture as it gives better reduction in dirt specks area at particular specific energy input.
- 6. The moisture content in newsprint should be kept in the range of 9 to 10 % instead of 5 to 6 % as observed. This will give better runnability on printing press. This will also give appreciable financial saving to the manufactures.
- 7. The smoothness. gloss, and printing characteristics of newsprint from waste papers can be improved by improving formation and soft nip calendering. Soft nip calendering will help to get better smoothness and linting control than hard nip calendering.
- 8. Double disc refiners which are generally being employed in mills for refining of waste paper pulp are sometimes not suitable in the development of proper fibre flexibility, which may cause higher linting. The conflow refiners are generally more suitable for such furnish.
- 9. The retention of fines is extremely important in improving the surface characteristics of newsprint. Retention aid of polyethylene imine type was quite effective as compared to alum or polyaluminium chloride.
- 10. The production trials (Case Study) at five mills had shown that it is possible to manufacture newsprint conforming to BIS: 11688/1999 specifications after alterations/optimization of manufacturing process. Each mill required different approach.

15.0 INFRASTRUCTURE CREATED

For carrying out studies on the 'Evaluation and Improvement of surface properties of newsprint manufactured from recycled fibers' the following instrument has been procured, installed and commissioned.

• Magedana DFS -03 dynamic filtration system

This is an automatic instrument with graphic display for the study of retention measurement of pulps. It thus helps to find out the effect of papermaking additives on the pulp and paper properties.

16.0 REFERENCES

- 1. American dictionary of paper, American Paper Institute 1980.
- 2. 'Glossary of printing and papermaking terms' El Gordon Ralphj, W, Collins, George. J Canadian Pulp and Paper Association, Tappi Printing and Graphic Art Committee (Second Edition).

- 3. Skowronski, J and Lepoute, P Tappi 68 (11):98 (1985).
- 4. BIS 11688/1991 standard "Specifications for newsprint".
- Linner and Lindquist (Web breaks and web tension topical themes in newsprint printing Research Ed Lars O Larsson Swedish Newsprint research centre (TLL) Djurholm 1988.
- Lyne, M,B Jaackson. M. Ranger, A.E and Trigg, A.R.N. In the fundamental properties of paper related to its uses (F. Bolam Ed) BPBIF 269–298 (1976).
- 7. Sood, Y.V., Guha, S.R.D Ranking of papers by in plane tear strength and elmendorf tear strength IPPTA,Vol 19 No. 2 (June 1982).
- 8. Kajanta, L.M; The effect of formation on absolute print unevenness in offset printing, Paperi Ja Puu 72 (1990):6, 600–610.
- Tolenaar, D., Sweuman, A. J. W; Blockhuis,G and Van Ganstel, L.A; "Printing blackness as characteristics for paper quality: IGT publication 24 (July 1967).
- 10. Kapoor. S. K. Sood. Y.V., Pande P.C., Pant. R. and Panda. An Improving the printing quality of indigenous newsprint. Ippta silver Jubilee international seminar and workshop 1989.
- 11. Sood. Y.V., Kapoor, S. K. and Pant. R., Ippta 22 (3), Sept (1985).
- 12. Printing quality of some indigenous newsprint CPPRI research report No.10. July 1985.
- 13. Studies on pinholes in the indigenous newsprint and their effect on printing characteristic CPPRI Research report No. 18. (July 1986).
- 14. Stiching Institute voor Grafische Techniek TNO Amsterdam 'Manual of instruction for the application of the type AIC 2–5 Printability tester 1989.

- 15. IGT methods "Newsprint print quality evaluation using IGT Printability tester'
- Larsson I.O. and Trollsas P.O. In paper in printing process (W.H. Banks Ed) Oxford. Pergamon 1965 pp 57–74.
- Levin J.E. and Nordman. L. In paper in printing process (W. H. Banks Ed) Oxford Pergamon 1965 PP 35–5.
- 18. Madsen. V and Aneliunas. A.E. Tappi 51 (7) p 304–314 (1986).
- 19. Wood, J. R. and Karnis, A. "Towards a Lint-free Newsprint Sheet" Paperi Ja puu, 10:660(1977).
- Wood, J. R., Imada, S. E., Beaulieu, S. and Kerr, R. B. "Reduction of Offset Linting – A Comparison of Six Mills. Part I, Pressroom Effects" Pulp Paper Canada, 96(10): T344-350(October 1995).
- 21. Lindem, P. E. and Moller, K. "The Dagbladet Full-scale Printing Trials. Part
 3: Linting in Four-Color Offset Printing" Tappi J., 77(7): 185–193(1994).
- 22. Sinider, E. H., "Linting of Offset Newsprint" Pulp Paper Canada, 79(2):T41-43 (1978).
- 23. Ionides, G. N. "The Linting Tendency of Newsprint A General Review." Paper Ja Puu, 4: 298–306 (1984).
- Karnis, A. "Effect of Wood Species and Process on Linting Propensity and Surface Roughening of Mechanical Pulps." JPPS, 21(9): J321–329 (1995).
- 25. Wood, J. R. and Karnis, A. "Linting Propensity of Mechanical Pulps." Pulp Paper Canada, 93(7): T191-198 (July 1992).
- 26. HOC, M, Tappi : 72(4) : 165 (1989).
- 27. Bostrom, B. T. Control and quality assurance opportunities through image analysis. Conf. Pira Paper and board div. (Oct. 12, 1989).
- 28. HOC, M., Personal discussion.
- 29. Trianntafillopoulos, N; Rosinksi, J and Serafano, J. Proc 1992 Inst. Printing Graphic arts Conf. Tappi press, Atlanta, p279 (1992).
- 30. Richardson, C.A, 63rd Ann Mtg. Tech Sect. CPPA Preprints,p B49(1977).

- 31. Haikkala, P, Liimatainen,H,Manner, H and Tuominen, R, Paper and Timber 72(4):393 (1990).
- Wood, J. R. Mc Donald, J. D., Ferry, P., Short, C. B. and Cronin, D. C.
 "The Effect of Paper Machine forming and Pressing on Offset Linting." Pulp Paper Canada, 99(10): T350-356 (1998).
- 33. Ginman, R and Vistl, J.;Adv. Printing Sci and Technol.; 217 (1973).
- Fibro FRT 1090 Fibre rising tester manual, Fibro System AB, Stockholm, Sweden.
- 35. Kapoor, S. K. Sood, Y. V., Rao, S, Akhtar, Yadav, S, Deepti, "Surface characteristics and functional properties of Newsprint manufactured from secondary fibres "Interaction meet on newsprint manufactured indigenously and quality standards 3rd May2002, New Delhi.
- Veska, T, Ferrahi, M, Hristropulos, D, Deng, N, and Moss, C- Factors controlling pressroom runnability of paper, in the science of Papermaking. Proc 12th Fundamental Research Symposium, Oxford, England (2001).

Appendix 1

Table I: Data of nine medium scale newsprint mills manufacturing newsprint from waste paper as raw material

-		Induiti ocale liev		Intallulacturing newsprint iron waste paper as raw material	I Waste Daber as raw I	naterial
Ś	Parameters	Mill1	Mill 2	Mill 3	Mill 4	Mill 5
No.				•		
~`	Raw Material Furnish	100% waste	100% waste	100% waste paper	100% waste paper	100% waste paper
		paper	paper	Imported waste paper –	Notebook, OMG,	
	- Type of waste paper			80%	Color trimmings,	ONP-20%
	used & its %	Printers off cut	ONP, Coated	Magazine trimmings, LCC,	office records	Note book-20%
		(POC),	book stock,	SOW, Mixed color cuttings		Old magazine-20%
		Magazine	fly leaf, SOW	Indigenous waste paper -		White leadgers-20%
		trimmings,		20% ONP, Printers cutoff,		Color leadgers-20%
		Mixed color		office waste etc)
		cuttings, LCC				
		(Imported),				
		exercise note				
		book, office				
		records etc				

2	Pulping Process					
	- Type of Hydrapulper Operating consistencv	Low consistency 6%	High consistency 20%	High consistency 12%	High consistency -	Low consistency 5%
	- Chemicals used in	NaOH- 1% Sod. Silicate-	NaOH (0.7 – 0.8%)	H ₂ O ₂ NaOH 0.7-0.8%	NaOH-0.8% Na ₂ SiO ₃ –0.8%	NaOH (0.75 –0.85%) Deinking Chemicals- 0.2
	hydrapulper (%)	1.5%	Surfex (0. 2%)	Deinking Chemical – 0.3%	Deinking Chemicals - 0.5%	Č -0.4%
		Deinking chemicals- 0.2%				
	 Temperature (°C) 	60 °C	40 –45° C	45-50 °C	60 °C	45 °C
ຕ່	High density cleaning - Operating consistency - Type of	2.5%	4.5%	4.5%	5%	5%
	equipment used	High density cleaner	High density cleaner	High density cleaner 6mm hole	High density cleaner	High density cleaner
	- Hole/slot size	8mm	(Poire) 8mm hole		8mm hole	6 mm hole
4	Thickener	Twin drum thickener	I	Single drum thickener	Single drum thickener	

N.A. Hot dis oxidative oxi	Cleaning System 3 stages Cleaning System 0.15 perforated Outlet cy. 32% 0.2 mm Slot Consistency 0.15 perforated Used 0.15 perforated Used 0.15 perforated Used 0.15 perforated Stage Vertical screens 0.2 mm Slot Stage Vertical screens 0.2 mm Slot <td< th=""><th>Cleaning System 3 stages Cleaning System 3 stages Contricted aning 3 stages Rescue 3 stages Stage centricteaning 3 stages Rescue 3 stages State 3 stages Rescue 3 stages Contricteaning 3 stages State state 3 stages State</th></td<> <th>Cy 1% 5 cell Cleaning System 3 stages Dispersing system 2 Stage Vertical screens Dispersing system Cleaning Stot basket 0.15 perfortated Dispersing system Kneader (3 NA, Hot dispersing with teuchants Consistency Hot 32% Nach Uter or, 32% NA, Hot dispersing with teuchants Used Chemicals Nackloa, 1% NA, Hot dispersing with teuchants Lemperature (°C) 70-90 -Temperature (°C) 70-90 -No. of stages -No. of stages</th> <th>Cy 1% o cell Cleaning System 3 stages centricleaning A cleaning System 3 stages centricleaning Cleaning System 2 stage Vertical screens Sict basing 2 stage Vertical screens Sict basing 2 stage Vertical screens Sict basing 0.1 fs perforated O 15 perforated 0.2 mm Slot Consistency Hot dispersing with Equipment screws) Used Undet cy. 32% Vice Chemicals Nachol 0.45 perforated Nachol Nachol Sistem Nachol Sistem Sistem Sistem Sistem Sistem Nachol Sistem Sistem Sistem Nachol Sistem Nachol Sistem Nachol Sistem Nachol Sist</th> <th><u>5</u>.</th> <th>Deinking Cell</th> <th>Electrotics time</th> <th>ı</th> <th>Flotation type</th> <th>ĩ</th> <th>Flotation type</th>	Cleaning System 3 stages Contricted aning 3 stages Rescue 3 stages Stage centricteaning 3 stages Rescue 3 stages State 3 stages Rescue 3 stages Contricteaning 3 stages State state 3 stages State	Cy 1% 5 cell Cleaning System 3 stages Dispersing system 2 Stage Vertical screens Dispersing system Cleaning Stot basket 0.15 perfortated Dispersing system Kneader (3 NA, Hot dispersing with teuchants Consistency Hot 32% Nach Uter or, 32% NA, Hot dispersing with teuchants Used Chemicals Nackloa, 1% NA, Hot dispersing with teuchants Lemperature (°C) 70-90 -Temperature (°C) 70-90 -No. of stages -No. of stages	Cy 1% o cell Cleaning System 3 stages centricleaning A cleaning System 3 stages centricleaning Cleaning System 2 stage Vertical screens Sict basing 2 stage Vertical screens Sict basing 2 stage Vertical screens Sict basing 0.1 fs perforated O 15 perforated 0.2 mm Slot Consistency Hot dispersing with Equipment screws) Used Undet cy. 32% Vice Chemicals Nachol 0.45 perforated Nachol Nachol Sistem Nachol Sistem Sistem Sistem Sistem Sistem Nachol Sistem Sistem Sistem Nachol Sistem Nachol Sistem Nachol Sistem Nachol Sist	<u>5</u> .	Deinking Cell	Electrotics time	ı	Flotation type	ĩ	Flotation type
Cleaning System 3 stages centricleaning Cleaning System 3 stages centricleaning Cleaning System 3 stages centricleaning Centricleaning 3 stages centricleaning Ressure 3 stages centricleaning Ressure 3 stages centricleaning Ressure 3 stages Fine Screening 8 Constraind 0.15 perforated Dispersing system 0.15 perforated 0.15 perforated 0.2 mm Slot Slot basket 0.2 mm Slot Slot basket 0.15 perforated Nach Hot dispersing with Consistency H ₂ O ₂ 3%, Vasch Consistency Vasch Vasch Vasch 70-90 -Temperature (°C) 70-90 -Temperature (°C) 70-90 -No. of stages -	 Cleaning System Cleaning System Cleaning System Cleaning System Cleaning System Centricleaning Consistency H₂D₃3%, Chemicals NA. Hot dispersing with Kneader Consistency H₂D₃3%, Chemicals NA. Hot dispersing with Kneader Consistency H₂D₃3%, Chemicals NaOH 0.5%, NA. Hot dispersing with Kneader Consistency H₂D₃3%, Chemicals NaOH 0.5%, Centrifugal No. of stages 	Cleaning System 3 stages 3 stage centricleaning Cleaning System 3 stages 3 stage centricleaning Cleaning System 3 stages 3 stage centricleaning Cleaning System 3 stages 3 stages Cleaning System 3 stages 3 stages Pressure 2 Stage Vertical screens 8 Sceening 2 Stage Vertical screens 0.15 perforated Dispersing system Consistency 0.15 perforated Type of Screening 2 Stage Vertical screens Screening 0.15 perforated 0.2 mm Slot Screening Screening 2 Stage Vertical screens Dispersing system Kneader (3 km N.A. Poilt cy. 32% Hot dispersing with screens Kneader Consistency Hot dispersing with screens Kneader Used Outlet cy. 32% N.A. Hot dispersing with screens Used NaCH 0.5% N.A. Not dispersing with screens Chemicals NacH 0.5% N.A. Not dispersing with screens Imaged NacH 0.5% N.A. Not dispersing with screens Imaged NacH 0.5% N.A. Not dispersing with screens Imaged Nacon 0.5% N.A. Not dispersing wi	Cleaning System 3 stages centricleaning Cleaning System 3 stages Dispersing system 2 mm Slot Dispersing system 0.15 performed Dispersing system 0.15 performed Chemicals 0.15 performed Chemicals 0.15 performed Consistency HoO Consistency HoO Chemicals NA HoO 0.15 performed Chemicals Na HoO 0.16 performed Chemicals Na HoO 0.16 performed Consistency HoO Consistency HoO Na Na HoO 0.5% Na Na	Cleaning System 3 stages Dispersing system 2 stage Ventical screens Dispersing system 0.15 perforated Dispersing system N.A. Hot dispersing with screens 0.2 mm Slot Used N.A. Hot dispersing with screens 0.16 stocks Used Na2Sio, 1% Used - I-Imperature (°C) 70-90 - - - -			Cy 1%		3 Cell		N
Cleaning System 3 stages centricleaning Cleaning System 3 stages Caning System 3 stages Caning System 3 stages Caning System 3 stages Centricleaning 3 stages Caning System 3 stages Centricleaning 3 stages Caning System 3 stages Caning System 3 stages Caning System 2 Stage Vertical screening R Pressure Stot basket 0.15 perforated Dispersing system 0.15 perforated Dispersing system N.A. Hot dispersing with Kneader Used 0.15 perforated Dispersing system N.A. Hot dispersing with Kneader Used 0.15 perforated Outlet cy. 32% NA NaOH 0.5% NA Nachtive bleaching Kneader (%) Nachtive bleaching Nachtive bleaching Kneader (%) Nachtive bleaching Nachtive bleaching Kneader (%) Nachtive bleaching (%) Nachtive bleaching (%) Nachtive bleaching (%) Nachtive bleaching <td< td=""><td>Cleaning System 3 stage contricteaning Cleaning System 3 stages Centriclaaning 3 stage contricteaning R Centriclaaning R Creening Slot basket 0.2 mm Slot Slot basket 0.15 perforated Dispersing system Kneader (3 NA Hot dispersing with Equipment Cutlet cy. 32% Nachu 0.5% H₂O.33% Nachu 0.5% Nachu 0.5% Used Nachu 0.5% Used Nachu 0.5% Used - -Temperature (^AC) 70-90 -Temperature (^AC) 70-90 -No. of stages -</td><td>Cleaning System 3 stage centricleaning Cleaning System 3 stages Cleaning System 3 stages Cleaning System 3 stages Centricleaning 2 stage vertical screens Stot basket 0.15 perforated Dispersing system 0.15 perforated Dispersing system 0.15 perforated Dispersing system NA. Dispersing system 0.15 perforated Dispersing system Contact vectors Dispersing system NA. Dispersing system Nach 0.5% Vactors Nach 0.5% Vactors<</td><td>Cleaning System 3 stages 3 stage centricleaning Cleaning System 3 stages 3 stages Pressure 2 Stage Vertical screens 3 stages Stot basket 0.15 perforated 0.2 mm Slot Stot basket 0.15 perforated 0.2 mm Slot Stot basket 0.15 perforated 0.2 mm Slot Stot basket 0.15 perforated 10.2 mm Slot Stot basket 0.2 mm Slot 10.2 mm Slot Stot basket 0.2 mm Slot 10.2 mm Slot Stot basket 0.1 for basket 0.2 mm Slot Stot basket 0.1 for basket 10.2 mm Slot Stot basket 0.2 mm Slot 10.2 mm Slot Stot basket 0.1 for basket 10.2 mm Slot</td><td>Cleaning System 3 stages 3 stage centricleaning Cleaning System 3 stages 3 stage centricleaning Cleaning System 3 stages 3 stage centricleaning Cleaning System 3 stages 5 fine Screening Pressure 2 stage Vertical screens 0.2 mm Slot Dispersing system Consistency 0.15 perforated Type of Sceening 2 stage Vertical screens Dispersing system Kneader (3 screens) N.A. Pressure Outlet cy. 32% N.A. Pressure Outlet cy. 32% N.A. Pressure Consistency Hot dispersing with screens Used Nacy 10% N.A. Hot dispersing with screens Used North of screens Screening Screening Used North of screens North of screens Screening Used North of screens North of screens Screening Used North of screens Screen</td><td></td><td></td><td></td><td></td><td></td><td></td><td>caustic lye – 1%</td></td<>	Cleaning System 3 stage contricteaning Cleaning System 3 stages Centriclaaning 3 stage contricteaning R Centriclaaning R Creening Slot basket 0.2 mm Slot Slot basket 0.15 perforated Dispersing system Kneader (3 NA Hot dispersing with Equipment Cutlet cy. 32% Nachu 0.5% H ₂ O.33% Nachu 0.5% Nachu 0.5% Used Nachu 0.5% Used Nachu 0.5% Used - -Temperature (^A C) 70-90 -Temperature (^A C) 70-90 -No. of stages -	Cleaning System 3 stage centricleaning Cleaning System 3 stages Cleaning System 3 stages Cleaning System 3 stages Centricleaning 2 stage vertical screens Stot basket 0.15 perforated Dispersing system 0.15 perforated Dispersing system 0.15 perforated Dispersing system NA. Dispersing system 0.15 perforated Dispersing system Contact vectors Dispersing system NA. Dispersing system Nach 0.5% Vactors Nach 0.5% Vactors<	Cleaning System 3 stages 3 stage centricleaning Cleaning System 3 stages 3 stages Pressure 2 Stage Vertical screens 3 stages Stot basket 0.15 perforated 0.2 mm Slot Stot basket 0.15 perforated 0.2 mm Slot Stot basket 0.15 perforated 0.2 mm Slot Stot basket 0.15 perforated 10.2 mm Slot Stot basket 0.2 mm Slot 10.2 mm Slot Stot basket 0.2 mm Slot 10.2 mm Slot Stot basket 0.1 for basket 0.2 mm Slot Stot basket 0.1 for basket 10.2 mm Slot Stot basket 0.2 mm Slot 10.2 mm Slot Stot basket 0.1 for basket 10.2 mm Slot	Cleaning System 3 stages 3 stage centricleaning Cleaning System 3 stages 3 stage centricleaning Cleaning System 3 stages 3 stage centricleaning Cleaning System 3 stages 5 fine Screening Pressure 2 stage Vertical screens 0.2 mm Slot Dispersing system Consistency 0.15 perforated Type of Sceening 2 stage Vertical screens Dispersing system Kneader (3 screens) N.A. Pressure Outlet cy. 32% N.A. Pressure Outlet cy. 32% N.A. Pressure Consistency Hot dispersing with screens Used Nacy 10% N.A. Hot dispersing with screens Used North of screens Screening Screening Used North of screens North of screens Screening Used North of screens North of screens Screening Used North of screens Screen							caustic lye – 1%
Cleaning System 3 stages 3 stage centricleaning Cleaning System 3 stages 3 stages Centricleaning 3 stages 3 stages Ressure 2 Stage Vertical screens 0.2 mm Slot Stot benforated 0.15 perforated 0.2 mm Slot Dispersing system Kneader (3	Cleaning System 3 stages centricleaning & Cleaning System 3 stages centricleaning & Centricleaning & 3 stages centricleaning & Centricleaning & 3 stages centricleaning & Centricleaning & 2 stage centricleaning & Centricleaning & 2 stage vertical screens 0.15 perforated Dispersing system Consistency Type of Equipment 0.15 perforated Dispersing system Kneader (3 0.15 perforated Dispersing system NA. Dispersing system Na. Dispersing system Na. Dispersing system Kneader (3 0.15 perforated Dispersing system NA. Distis system Na. Di	Cleaning System Stages centricleaning & 3 stages centricleaning & 3 stages centricleaning & 3 stages centricleaning & 2 stage centricleaning & 2 stage vertical screening & 1 model Image: Centricleaning System 3 stages centricleaning & 3 stages centricleaning & 2 model Image: Centricleaning System 3 stages centricleaning & 3 stages Image: Centricleaning & 2 model 2 stage vertical screens Image: Centricleaning System 0.15 perforated Image: Centricleaning system 0.15 perforated Image: Centricleaning system 0.15 perforated Image: Centricleaning system 0.16 perforated Image: Centricleaning system 10 perforated Image: Centricleaning s	Cleaning System 3 stage centricleaning R 3 stages Centricleaning 3 stage centricleaning R Centricleaning R Centricleaning R Centricleaning R Centricleaning R Centricleaning R Fine Screening R Fine Screening Siot basket 0.2 mm Slot Siot basket 0.15 perforated N NA. Hot dispersing with Equipment Screws) 0.15 perforated 0.16 perforated Nacher NA. Nacher NA. Nacher Hot dispersing with Consistency H ₂ O ₂ 3%, (%) H ₂ O ₂ 3%, (%) Nach Nacher Nacher (%) Nach Nacher Nacher (%) Nacher (%) Nacher Nacher Nacher N	Cleaning System stages centricleaning 3 stages centricleaning Cleaning System 3 stages 3 stages Pressure Stot basket 0.15 perforated Stot basket 0.15 perforated 0.2 mm Slot Stot basket 0.15 perforated 0.2 mm Slot Stot basket 0.16 perforated 0.2 mm Slot Stot basket 0.16 perforated 0.16 perforated Ippe of Fquipment Kneader (3 kie Stot basket 0.16 perforated 0.16 perforated Imperature (°C) To.30% N.A. Hot dispersing with Imperature (°C) To.90 To.90 Imperature (°C) Imperature (°C) To.90 Imperature Imperature Immeder Immeder Immeder							soap oil- 0.3% H ₂ O ₂ - 1%
Cleaning System 3 stages 3 stage centricleaning 3 stages 3 stages 3 stages Centricleaning 3 stages 8 Centricleaning 8 Fine Screening R Centricleaning 8 Centricleaning 8 Fine Screening R Pressure 2 Stage Vertical screens Stot basket 0.2 mm Slot 0.2 mm Slot Dispersing system Kneader (3 N.A. Pressure 0.15 perforated 0.2 mm Slot Nachorated 0.15 perforated 0.2 mm Slot Nace Consistency Hat dispersing with screens Used NacoH 0.5% NA. Nachor 0.5% NA. Hot dispersing with screens Used Na2Slo3 1% NA. Temperature (⁰ C) 70-90 - Centrifugal - - -No. of stages - -	Cleaning System 3 stages 3 stage centricleaning 8 Centricleaning 3 stages 8 Fine Screening Remercian 2 stage Vertical screens 0.2 mm Slot Dispersing system 0.15 perforated 0.2 mm Slot Dispersing system 0.15 perforated 0.2 mm Slot Type of 0.15 perforated 0.2 mm Slot Pressure 0.15 perforated 0.2 mm Slot Providative bleaching Kneader Veader 0.15 perforated N.A. Providative bleaching Kneader Veader NaOH 0.5% NaOH 0.5% Used NazSio ₃ 1% NaoH 0.5% -Temperature (°C) 70-90 - -Temperature (°C) 70-90 - -No. of stages - -	Cleaning System 3 stages centricleaning & a stages centricleaning & a stages a centricleaning & a stages centricleaning & a stages vertical screens a stages vertical screens a stage vertical screens Cleaning System 3 stages vertical screens a value of the screening of a stage vertical screens Dispersing system 7 no stage vertical screens - Type of screws) 0.15 perforated of 15	Cleaning System 3 stages a & & Centricleaning 3 stages centricleaning 1 3 stages 3 stages centricleaning 2 Centricleaning 3 stages centricleaning 2 Pressure Stot basket 2 stage vertical screens 1 Type of Equipment 0.15 perforated 1 Type of Stot basket N.A. 1 Type of Stot screens) N.A. 1 Type of Stot screens N.A.	Cleaning System 3 stage centricleaning a 3 stage centricleaning Erine Screening Centricleaning 3 stages verticleaning Centricleaning 3 stages verticleaning Centricleaning 2 Stage Vertical screens Pressure Sceening Sceening 0.2 mm Slot Dispersing system N.A. Hot dispersing with Equipment M.A. Dispersing system N.A. Prossure 0.15 perforated Outlet cy. 32% N.A. Hot dispersing with tequipment N.A. NaOH 0.5% Hot dispersing with visco visitancy Viso of teauing N.A. Preserver Outlet cy. 32% - Consistency Hot dispersing with visco visco v							MgSO ₄ – 0.3% Na ₅ SiO ₅ – 1 5%
3 stages 3 stages 8 3 stages 3 stages 8 Centricleaning 8 Centricleaning 8 Pressure 8 Pressure 9 Dispersing system 1 Type of Slot basket 0.15 perforated 0.15 perforated 0.15 perforated 0.16 perforated 1 Type of screws) 1 Used N.A. Hot dispersing with 1 State 1 State 1 State 1 Type of 1 State	Image: Stages and stages and stages and stages and stages and stages and and stages centricleaning a stages centricleaning a streem a screening streem a screem a screem a screening streem a screening streem a screem a screem	3 stages 3 stages 3 stages 3 stages a 3 stages Centricleaning 8 a Centricleaning 8 a Fine Screening 5 stage Vertical screens a Pispersing system 7 screening Dispersing system 0.15 perforated 0.2 mm Slot Dispersing system N.A. Hot dispersing with Equipment Outlet cy. 32% N.A. Used Naceder (3 N.A. Dispersing system Naceder (3 Naceder (3 N.A. Dispersing system Naceder (3 Undet cy. 32% N.A. Used Outlet cy. 32% Naceder (3 N.A. Naceder (3 N.A. Dispersing with Kneader (3 Used Naceder (3 Naceder Naceder (3 Naceder Naceder Naceder Naceder Naceder Naceder Othol 0.5% Naceder Used Naceder Naceder Naceder Naceder Naceder Naceder Naceder Naceder Naceder Naceder Naceder Naceder Naceder	3 stages 3 stages 3 stages Centricleaning 8 Centricleaning 8 Centricleaning Centricleaning Ressure 2 stage Vertical screens Pressure 2 stage Vertical screens Sceening Sold basket 0.15 perforated 0.2 mm Slot Dispersing system Kneader (3 0.15 perforated - Type of N.A. Dispersing system Kneader (3 0.2 mm Slot - Type of Outlet cy. 32% - Consistency Hot dispersing with vaced NaOH 0.5% N.A. NaOH 0.5% NaOH 0.5% Used Na_Slo ₃ 1% -Temperature (°C) 70-90 -Temperature (°C) - -Temperature (°C) - -Temperature (°C) - -Temperature (°C) -	3 stages 3 stages Centricleaning Centricleaning Centricleaning Ene Screening Pressure Pressure Pressure Sceening Sceening Sceening Sceening Sceening Sceening Sceening Sceening Sceening Dispersing system Consistency Type of Sceening Sceening NA Dispersing system Kneader (3 Na Na Hot dispersing with Kneader Consistency Hot dispersing with Vision Under cy. 32% Vacion NaOH 0.5% Used NaOH 0.5% Used Na OH 0.5% Usedanture (¹ C) 70-90	6.	Cleaning System			3 stage centricleaning		
Centricleaning Fine Screening & 2 Stage Vertical screens Pressure 2 Stage Vertical screens 0.2 mm Slot 0.2 mm Slot Slot basket 0.2 mm Slot 0.15 perforated 0.15 perforated Dispersing system N.A. Type of Stage Vertical screens 0.15 perforated 0.15 perforated Dispersing system N.A. Neader (3 N.A. Pressing system N.A. Dispersing system N.A. Outlet cy. 32% N.A. - Consistency Hot dispersing with screens (%) NaOH 0.5% used Na2Sio ₃ 1% . Temperature (°C) 70-90 . Temperature (°C) 70-90 . No. of stages - No. of stages	Centricleaning Fine Screening & Centricleaning Bispersure Sceening Stot basket 0.2 mm Slot Dispersing system Stot basket Type of Stot basket Type of Stot basket Consistency 0.15 perforated NA Hot dispersing with Consistency H ₂ O ₂ 3%, Vac Chemicals Nach 0.5% Nach 0.5% Used To -90 -Temperature (°C) To -90 -No. of stages -	Centricleaning Fine Screening & & Pressure Stage Vertical screens Stot basket 0.15 perforated Dispersing system Contraled Type of Kneader (3 Type of Kneader (3 Equipment Stot basket Outlet cy. 32% N.A. Pispersing system Modulet cy. 32% Consistency H ₂ O ₂ 3%. Vocostency NaOH 0.5% Used NaoH 0.5% No. of stages -	Centricleaning Fine Screening & 2 Stage Vertical screens Bispersing system 2 Stage Vertical screens Dispersing system 2 Stage Vertical screens Dispersing system 2 Stage Vertical screens Dispersing system 0.15 perforated Dispersing system 0.15 perforated Dispersing system N.A. Type of Kneader (3 kneade	Amount Centricleaning Fine Screening R Ressure 2 Stage Vertical screens R Pressure 2 Stage Vertical screens Stot basket 0.15 perforated 0.2 mm Slot Dispensing system N.A. Hot dispersing with Type of voxidative bleaching Kneader Outlet cy. 32% N.A. Hot dispersing with Consistency H ₂ O ₂ 3%, N.A. Nachol 0.5% Nachol Used Nachol Nachol Temperature (⁴ C) 70-90 - No. of stages - -			3 stages		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Resure Fresure Sceening A 2 Stage Vertical screens Presure Stot basket 0.2 mm Slot Dispersing system 0.15 perforated Dispersing system 0.15 perforated Type of Equipment 0.15 perforated Visit Providative bleaching Visit 0.15 perforated Visit N.A. Hot dispersing with used Kneader (3 0.15 perforated) Visit N.A. Providative bleaching Kneader (%) H ₂ O ₂ 3%, used NaOH 0.5% NaOH 0.5% Used Na2Sio ₃ 1% - Temperature (°C) 70 -90 - No. of stages -	Amount Amount 2 Stage Ventical screens Pressure Stage Ventical screens Dispersing system Type of Type of Type of State Ventical screens Outlet cy. 32% Vacader (3 N.A. Hot dispersing with screens) Used Outlet cy. 32% Vacader (3) NaOH 0.5% Used Na2Sio ₃ 1% Fumperature (⁰ C) To-90 - No. of stages	x x 2 Stage Vertical screens Pressure Sceening Stot basket Stot basket Stot basket 0.15 perforated Dispersing system Kneader (3 screws) Type of Equipment M.A. Pressure 0.2 mm Slot On 15 perforated 0.15 perforated Pressure N.A. NaOH 0.5% N.A. NaSio ₃ 1% N.A. Premicals N.D90 Indenting Indentified Indentified Indentified Indentified <td>A A 2 Stage Vertical screens Pressure Scening Scening Stot basket 0.15 perforated 0.2 mm Slot Dispersing system Kneader (3 N.A. Prype of Equipment Screws) 0.2 mm Slot Type of Stot basket Outlet cy. 32% Hot dispersing with view bleaching Vision Hould for y 32% M.A. Pressure Consistency Hot dispersing with view bleaching Vision NaOH 0.5% NaOH 0.5% Used No. of stages -</td> <td>Amount Amount Z Stage Vertical screens Pressure Screening 2 Stage Vertical screens Stot basket 0.15 perforated 0.2 mm Stot Dispersing system 0.15 perforated 0.2 mm Stot Type of Equipment Consistency Hot dispersing with screws) Kneader (3 bit dispersing with screws) - Type of Consistency H₂O₂ 3%, (%) N.A. Hot dispersing with oxidative bleaching - Consistency H₂O₂ 3%, used NaOH 0.5% NaOH 0.5% NaOH 0.5% bit hot of stages - Temperature (°C) 70-90 - - - No. of stages - - -</td> <td></td> <td></td> <td>Centricleaning</td> <td></td> <td>Fine Screening</td> <td></td> <td></td>	A A 2 Stage Vertical screens Pressure Scening Scening Stot basket 0.15 perforated 0.2 mm Slot Dispersing system Kneader (3 N.A. Prype of Equipment Screws) 0.2 mm Slot Type of Stot basket Outlet cy. 32% Hot dispersing with view bleaching Vision Hould for y 32% M.A. Pressure Consistency Hot dispersing with view bleaching Vision NaOH 0.5% NaOH 0.5% Used No. of stages -	Amount Amount Z Stage Vertical screens Pressure Screening 2 Stage Vertical screens Stot basket 0.15 perforated 0.2 mm Stot Dispersing system 0.15 perforated 0.2 mm Stot Type of Equipment Consistency Hot dispersing with screws) Kneader (3 bit dispersing with screws) - Type of Consistency H ₂ O ₂ 3%, (%) N.A. Hot dispersing with oxidative bleaching - Consistency H ₂ O ₂ 3%, used NaOH 0.5% NaOH 0.5% NaOH 0.5% bit hot of stages - Temperature (°C) 70-90 - - - No. of stages - - -			Centricleaning		Fine Screening		
Pressure 0.2 mm Slot Sceening Sceening Sich basket 0.15 perforated Dispersing system Sceening - Type of N.A. Pressure 0.15 perforated - Type of N.A. Pressing system Kneader (3 - Type of N.A. Pointent Screws) used Outlet cy. 32% - Consistency H ₂ O ₂ 3%, (%) H ₂ O ₂ 3%, (%) NaOH 0.5% used NaOH 0.5% used NaOH 0.5% used NaOH 0.5% - Chemicals Na2Sio ₃ 1% - Temperature (⁰ C) 70-90 - No. of stages -	Pressure 0.2 mm Slot Steening Sceening Sceening Sceening Steening Steening Steening N.A. Pispersing system Mreader (3 N.A. Hot dispersing with Steenical Mreader (3 Used Mach 0.5% Used Na_2Sio ₃ 1% -Temperature (°C) 70-90 -No. of stages -	Image: Pressure control of the sector of	Image: Pressure constraint of the sector of the sector sector sector sector sector sector sector sector of the	Image: Pressure Sceening Sceening Sceening Soft baseted Soft baset Soft baset base		- <u>t</u>	න (2 Stage Vertical screens		
Sceening Slot basket Sceening Slot basket Sceening Slot basket Dispersing system 0.15 perforated Type of Equipment N.A. Hot dispersing with screws) - Type of Equipment Kneader (3 screws) N.A. - Type of Used Kneader (3 screws) N.A. - Type of Used Kneader (3 screws) N.A. - Consistency (%) H ₂ O ₂ 3%, NaOH 0.5% N.A. - Chemicals NaOH 0.5% used Na_Slo ₃ 1% - Temperature (⁰ C) 70 -90 - Temperature (⁰ C) - - No. of stages -	Sceening Sceening Dispersing system 0.15 perforated Dispersing system 0.15 perforated - Type of Siot basket 0.15 perforated 0.15 perforated - Type of Kneader (3 - Type of N.A. - Type of N.A. - Type of N.A. - Ubispersing system Kneader (3 - Stews) N.A. - Ubispersing with Kneader (3 - Consistency H ₂ Co.3%, (%) H ₂ Co.3%, - Chemicals Na2NOH 0.5% used Na2Sio ₃ 1% - Temperature (⁰ C) 70-90 - No. of stages -	Sceening Sceening Dispersing system Slot basket Dispersing system 0.15 perforated - Type of Slot basket - Type of N.A. - Slot basket 0.0161 cy. 32% - Consistency H ₂ O ₂ 3%, (%) H ₂ O ₂ 3%, (%) H ₂ O ₂ 3%, NaOH 0.5% NaOH 0.5% used Na_2Slo ₃ 1% -Temperature (⁰ C) 70-90 - No. of stages -	Sceening Sceening Image: Solut basket 0.15 perforated Image: Solut basket 0.16 dispersing with screws)	Sceening Sceening Sceening Dispersing system 0.15 perforated 1 Type of Equipment - Type of Equipment - Type of Equipment - Used - Outlet cy. 32% - Consistency (%) H ₂ O ₂ 3%, (%) - Consistency (%) NaOH 0.5% used Na2Sio ₃ 1% - - - - - - - - - - - - - - - - - - - -			Pressure		0.2 mm Slot		
Slot basket Slot basket Dispersing system 0.15 perforated Type of Equipment N.A. Type of Equipment M.A. Pispersing system Kneader (3 screws) Vased Outlet cy. 32% Consistency H ₂ O ₂ 3%, (%) H ₂ O ₂ 3%, used N.A. Ano Hot dispersing with used N.A. - Consistency H ₂ O ₂ 3%, used - Temperature (⁰ C) 70-90 - Temperature (⁰ C) - - No. of stages	Nispersing system Slot basket Dispersing system 0.15 perforated Type of Equipment 0.15 perforated N.A. Hot dispersing with screws) Vise of Equipment N.A. Pispersing system Kneader (3 screws) - Type of Equipment Kneader (3 screws) - Consistency H ₂ O ₂ 3%, NacHet cy. 32% - Consistency H ₂ O ₂ 3%, NacHet cy. 32% - Consistency H ₂ O ₂ 3%, NacHet cy. 32% - Consistency H ₂ O ₂ 3%, NacHet cy. 32% - Consistency H ₂ O ₂ 3%, NacHet cy. 32% - Consistency H ₂ O ₂ 3%, NacHet cy. 32% - Consistency Hot dispersing with screws) - Consistency H ₂ O ₂ 3%, NacHet cy. 32% - Consistency H ₂ O ₂ 3%, NacHet cy. 32% - Consistency H ₂ O ₂ 3%, NacHet cy. 32% - Consistency H ₂ O ₂ 3%, NacHet cy. 32% - Consistency NacHet cy. 3	Slot basket Slot basket Dispersing system 0.15 perforated Dispersing system 0.15 perforated Type of Equipment N.A. Pispersing system Kneader (3 to screws) Pispersing system Kneader (3 to screws) Consistency Kneader (3 to screws) H2O2 3%, (%) N.A. H2O2 3%, (%) Nachtive bleaching Kneader Nachtive bleaching (%) Nachtive bleaching Imperature (°C) 70-90 Centrifugal - -No. of stages -	Image: Sign basket Sign basket Image: Sign basket Dispersing system 0.15 perforated 0.15 perforated Type of Kneader (3 kmader (3	Image: Sind basket 0.15 perforated 0.15 perforated Dispersing system 0.15 perforated 0.15 perforated Type of Type of Kneader (3 N.A. Fquipment screws) N.A. Hot dispersing with used Outlet cy. 32% N.A. NaOH 0.5% . Consistency H2O_2 3%, NaOH 0.5% . Chemicals NaOH 0.5% NaOH 0.5% . Chemicals NaOH 0.5% 1 . Consistency Hot dispersing with Kneader . Consistency H2O_3 3%, . . Consistency NaOH 0.5% . . Chemicals NaOH 0.5% . . Considering Nao . Outlet cy. 32% . . Consistency Hot dispersing with . Consistency Hot dispersing with . Consistency Hack of the section of the			Sceening				
0.15 perforated 0.15 perforated Dispersing system 0.15 perforated Type of Kneader (3 Reader (3 N.A. Hot dispersing with used N.A. Outlet cy. 32% Outlet cy. 32% Consistency H ₂ O ₂ 3%, with the consistency (%) H ₂ O ₂ 3%, with the consistency (%) H ₂ O ₂ 3%, with the consistency (%) H ₂ O ₂ 3%, with the consistency (%) H ₂ O ₂ 3%, with the consistency (%) H ₂ O ₂ 3%, with the consistency (%) H ₂ O ₂ 3%, with the consistency (%) H ₂ O ₂ 3%, with the consistency (%) H ₂ O ₂ 3%, with the consistency (%) H ₂ O ₂ 3%, with the consistency (%) H ₂ O ₂ 3%, with the consistency (%) Na ₂ Sio ₃ 1% -Temperature (⁰ C) 70-90 -No. of stages -	Dispersing system 0.15 perforated 0.15 perforated - Type of Equipment Kneader (3 v. 32%) N.A. Hot dispersing with oxidative bleaching - Type of Equipment screws) N.A. Hot dispersing with oxidative bleaching - Type of Equipment screws) N.A. Hot dispersing with oxidative bleaching - Consistency H ₂ O ₂ 3%, (%) H ₂ O ₂ 3%, (%) N.A. - Consistency NaOH 0.5% NaOH 0.5% used Na2Sio ₃ 1% Na2Sio ₃ 1% - Temperature (⁰ C) 70-90 - - No. of stages - -	Dispersing system 0.15 perforated 0.15 perforated - Type of Equipment - Type of Equipment N.A. Hot dispersing with oxidative bleaching - Type of Equipment - Type of screws) Kneader (3 bith N.A. Hot dispersing with oxidative bleaching - Consistency H ₂ O ₂ 3%, (%) - Consistency H ₂ O ₂ 3%, NaOH 0.5% N.A. Hot dispersing with oxidative bleaching - Consistency H ₂ O ₂ 3%, (%) N.A. Hot dispersing with oxidative bleaching Kneader - Consistency Na ₂ Sio ₃ 1% N.A. N.A. Hot dispersing with oxidative bleaching Kneader - Consistency H ₂ O ₂ 3%, (%) Na ₂ Sio ₃ 1% - Temperature (⁰ C) 70 -90 - - No. of stages - - - - -	Dispersing system 0.15 perforated 0.15 perforated - Type of Equipment - Type of Equipment Kneader (3 screws) N.A. Hot dispersing with screws) - Second used - Consistency H ₂ O ₂ 3%, N ₂ Slo ₃ 1% N.A. Hot dispersing with oxidative bleaching - Consistency H ₂ O ₂ 3%, Used N.A. Hot dispersing with oxidative bleaching Kneader - Consistency H ₂ O ₂ 3%, Used NaOH 0.5%, Na ₂ Slo ₃ 1% - - - Temperature (⁰ C) 70 -90 - - - - No. of stages - - - -	Dispersing system 0.15 perforated 0.15 perforated - Type of Equipment Kneader (3			Slot basket				
Dispersing system Kneader (3 Equipment N.A. Hot dispersing with screws) - Type of Equipment Kneader (3 screws) N.A. Hot dispersing with screws) - Consistency NA- Hot dispersing with screws) Kneader - Consistency H ₂ O ₂ 3%, (%) NA- Hot dispersing with screws) Kneader - Consistency NaOH 0.5%, used NaOH 0.5%, Na2Sio ₃ 1% Na Na -Temperature (⁰ C) 70-90 - - - -Temperature (⁰ C) - - - - - Centrifugal - - - - - No. of stages - - - -	Dispersing system Mispersing with Type of Equipment Type of screws) N.A. Fquipment N.A. Equipment screws) used Outlet cy. 32% Consistency H ₂ O ₂ 3% (%) H ₂ O ₂ 3% (%) H ₂ O ₂ 3% (%) NaOH 0.5% used Na2Sio ₃ 1% -Temperature (°C) 70-90 -Temperature (°C) - No. of stages -	Dispersing system Kneader (3 Equipment N.A. Hot dispersing with screws) - Type of Equipment Kneader (3 screws) N.A. Hot dispersing with screws) - Used Outlet cy. 32% N.A. Hot dispersing with screws) - Consistency H ₂ O ₂ 3%, (%) N.A. Hot dispersing with screws) - Consistency Nacholo 0.5% Nacholo 0.5% used Nacholo 0.5% Nacholo 0.5% - Temperature (⁰ C) 70-90 - - Centrifugal - - - No. of stages - -	Dispersing system M.A. Hot dispersing with screws) - Type of Equipment Strews) - Type of screws) N.A. - Type of Equipment used Curlet cy. 32% N.A. - Consistency H ₂ O ₂ 3% N.A. (%) H ₂ O ₂ 3% N.A. - Consistency NaOH 0.5% NaOH 0.5% - Chemicals NaZSio ₃ 1% NaOH 0.5% - Temperature (⁰ C) 70 -90 - - No. of stages - -	Dispersing system Miseder (3 Equipment used N.A. Hot dispersing with screws) - Type of Equipment used Screws) N.A. Hot dispersing with screws) - Consistency N=0.0165% NaOH 0.5% - Consistency NaOH 0.5% NaOH 0.5% (%) NaOH 0.5% NaOH 0.5% - Temperature (°C) 70-90 - - Temperature (°C) 70-90 - - No. of stages - -			0.15 perforated				
 Iype of Kneader (3 N.A. Hot dispersing with Equipment screws) used Consistency (%) H₂O₂ 3%, oxidative bleaching Kneader (%) NaOH 0.5% used Chemicals Na2Sio₃ 1% NaOH 0.5% used Temperature (°C) 70-90 - Centrifugal No. of stages 	 Iype of Kneader (3 Equipment screws) Equipment screws) Consistency Consistency Consistency Consistency H2O2 3%, Chemicals NaOH 0.5% NaOH 0.5% NaOH 0.5% Chemicals NaOH 0.5% NaOH 0.5% Sio₃ 1% To-90 No. of stages 	- Type of Kneader (3 N.A. Hot dispersing with Equipment screws) used - Consistency (%) H ₂ O ₂ 3%, (%) H ₂	- Iype of Equipment Kneader (3 screws) N.A. Hot dispersing with screws) Kneader - Consistency vised oxidative bleaching Kneader - Consistency H2O2 3%, (%) H2O2 3%, NaOH 0.5% oxidative bleaching Kneader - Chemicals NaOH 0.5% NaOH 0.5% naOH oxidative bleaching Kneader - Temperature (°C) 70-90 - - - - - No. of stages - - - -	- Type of Equipment Kneader (3 screws) N.A. Hot dispersing with screws) - Equipment screws) N.A. Hot dispersing with screws) - Consistency H ₂ O ₂ 3%, (%) N.A. Not dispersing with oxidative bleaching - Consistency H ₂ O ₂ 3%, (%) NaOH 0.5% NaOH 0.5% - Chemicals NaOH 0.5% NaOH 0.5% used Na ₂ Sio ₃ 1% - - Temperature (⁰ C) 70-90 - No. of stages -	7.	Dispersing system					
Equipment screws) oxidative bleaching Kneader used Outlet cy. 32% oxidative bleaching Kneader - Consistency H2O2 3%, NaOH 0.5% NaOH 0.5% (%) NaOH 0.5% NaOH 0.5% NaOH 0.5% - Chemicals Na2Sio ₃ 1% Centrifugal - - Temperature (°C) 70 -90 - - - No. of stages - - -	Equipment screws) oxidative bleaching Kneader - Consistency H ₂ O ₂ 3%, (%) NacOH 0.5% oxidative bleaching Kneader - Consistency NaOH 0.5% NaOH 0.5% nacot 1% nacot 1% nacot 1% - Temperature (°C) 70-90 - - - - - Centrifugal - - - - - No. of stages - - - -	Equipment screws) oxidative bleaching Kneader used Outlet cy. 32% 0utlet cy. 32% kneader Consistency H ₂ O ₂ 3% NaOH 0.5% NaOH 0.5% NaoH 0.5% NaOH 0.5% NaOH 0.5% used Na2Sio ₃ 1% - -Temperature (⁰ C) 70-90 - -No. of stages - -	Equipment screws) oxidative bleaching Kneader - Consistency H2O2 3%, (%) 0utlet cy. 32% oxidative bleaching Kneader - Consistency H2O2 3%, (%) NaOH 0.5% NaOH 0.5% NaOH 0.5% NaOH 0.5% - Temperature (⁰ C) 70-90 - - - - - Mo. of stages - - - -	Equipment used screws) used oxidative bleaching Kneader - Consistency (%) H ₂ O ₂ 3%, NaOH 0.5% oxidative bleaching Kneader - Chemicals NaOH 0.5% NaOH 0.5% naoH - Chemicals Na2Sio ₃ 1% naoH naoH - Temperature (°C) 70-90 - - - No. of stages - - -		- Iype of	Kneader (3	N.A.	Hot dispersing with		N. A.
used Outlet cy. 32% - Consistency H2O2 3%, (%) - Consistency NaOH 0.5% - Chemicals NaOH 0.5% used Na2Sio ₃ 1% - Temperature (°C) 70-90 - No. of stages -	used Outlet cy. 32% - Consistency H ₂ O ₂ 3%, (%) (%) H ₂ O ₂ 3%, (%) - Chemicals NaOH 0.5% used NaOH 0.5% used Na_2Sio ₃ 1% - Temperature (°C) 70 -90 - Centrifugal - - No. of stages -	used used - Consistency H ₂ O ₂ 3%, (%) H ₂ O ₂ 3%, - Chemicals NaOH 0.5% used Na2Sio ₃ 1% -Temperature (⁰ C) 70-90 - Centrifugal - - No. of stages -	used - Consistency Outlet cy. 32% - Consistency H2O2 3% (%) H2O2 3% - Chemicals NaOH 0.5% used NaOH 0.5% used Na2Sio ₃ 1% - Temperature (°C) 70-90 - No. of stages -	used Outlet cy. 32% - Consistency H ₂ O ₂ 3%, (%) - Chemicals NaOH 0.5% - Chemicals Na2Sio ₃ 1% - Temperature (⁰ C) 70 -90 - Centrifugal - - No. of stages -		Equipment	screws)		oxidative bleaching	Kneader	_
- Consistency (%) H ₂ O ₂ 3%, (%) NaOH 0.5% NaOH 0.5% used Na ₂ Sio ₃ 1% -Temperature (⁰ C) 70-90	- Consistency (%) H ₂ O ₂ 3%, (%) NaOH 0.5% NaOH 0.5% Na2Sio ₃ 1% - Chemicals Na2Sio ₃ 1% - Chemicals Na ₂ Sio ₃ 1% - Chemicals Na ₂ Sio ₃ 1% - Chemicals - No. of stages	- Consistency (%) H ₂ O ₂ 3%, (%) NaOH 0.5% used Na2Sio ₃ 1% -Temperature (⁰ C) 70 -90 Centrifugal	- Consistency (%) H ₂ O ₂ 3%, (%) NaOH 0.5% used Na ₂ Sio ₃ 1% -Temperature (⁰ C) 70 -90 Centrifugal - No. of stages - No. of stages	- Consistency (%) H ₂ O ₂ 3%, (%) NaOH 0.5% NaOH 0.5% used Na2Sio ₃ 1% -Temperature (⁰ C) 70-90		used	Outlet cy. 32%				
(%) H ₂ O ₂ 3%, - Chemicals NaOH 0.5% used NaOH 0.5% - Temperature (°C) 70 -90 - Teaning - - No. of stages -	(%) H ₂ O ₂ 3%, chemicals H ₂ O ₂ 3%, NaOH 0.5% - Chemicals NaOH 0.5% used Na ₂ Sio ₃ 1% -Temperature (⁰ C) 70 -90 Centrifugal - - No. of stages -	- (%) H ₂ O ₂ 3%, water and the second	(%) H ₂ O ₂ 3%, - Chemicals NaOH 0.5% used NaOH 0.5% Imperature (⁰ C) 70 -90 - Temperature (⁰ C) 70 -90 Centrifugal - - No. of stages -	(%) H ₂ O ₂ 3%, - Chemicals NaOH 0.5% used NaOH 0.5% -Temperature (°C) 70 -90 -Temperature (°C) 70 -90 - No. of stages -		- Consistency					
- Unemicals NaOH U.5% used Na ₂ Sio ₃ 1% -Temperature (⁰ C) 70-90 Centrifugal - No. of stages - No. of stages	- Unemicals NaCH U.5% used Na ₂ Sio ₃ 1% -Temperature (⁰ C) 70-90 Centrifugal	- Unemicals NaCH U.5% used Na2Sio ₃ 1% -Temperature (⁰ C) 70 -90 -Temperature (⁰ C) 70 -90 Centrifugal - - No. of stages -	- Criemicals NaOH U.5% used Na ₂ Sio ₃ 1% -Temperature (⁰ C) 70-90 Centrifugal	- Chemicals NaCH U.5% Used Na ₂ Sio ₃ 1% Na ₂ Sio ₃ 1% Na ₂ Sio ₃ 1% - Temperature (⁰ C) 70 -90 - Temperature (⁰ C) 70 -90		(%)	H ₂ O ₂ 3% ,				
used Na2Si03 1% -Temperature (°C) 70 -90 Centrifugal - cleaning - - No. of stages -	used Na ₂ Si0 ₃ 1% -Temperature (⁰ C) 70-90 Centrifugal - Cleaning - - No. of stages -	used Na2Si03 1% -Temperature (⁰ C) 70 -90 Centrifugal - cleaning - - No. of stages -	used Na ₂ Slo ₃ 1% -Temperature (⁰ C) 70 -90 Centrifugal - Cleaning - - No. of stages -	used Na ₂ Slo ₃ 1% -Temperature (⁰ C) 70 -90 Centrifugal - cleaning - - No. of stages -		- Unemicals					
-Temperature (⁰ C) 70-90 Centrifugal - No. of stages - No. of stages	-Temperature (°C) 70-90 - Centrifugal - - - Cleaning - - - - - No. of stages - - - -	-Temperature (°C) 70-90 Centrifugal - Centrifugal - Cleaning - No. of stages	-Temperature (°C) 70-90 Centrifugal - Centrifugal - Cleaning - - No. of stages -	-Temperature (°C) 70-90 Centrifugal - cleaning - No. of stages		nsed	Na ₂ Sio ₃ 1%				
-Temperature (°C) 70-90 70-90 Centrifugal - - - Cleaning - - - - No. of stages - - -	-Temperature (°C) 70-90 70-90 Centrifugal - - - Centrifugal - - - Cleaning - - - - No. of stages - - -	-Temperature (°C) 70-90 70-90 Centrifugal - - Cleaning - - - No. of stages -	-Temperature (°C) 70-90 Centrifugal - Centrifugal - Cleaning - - No. of stages -	-Temperature (°C) 70-90 Centrifugal - Centrifugal - Cleaning - - No. of stages -							
Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal		-Temperature (⁰ C)	06-02				
tages	tages	tages	tages	tages	ω.	Centrifugal					Present
						cleaning					
						- INO. OI STAGES		F			

ກ	Screening (fine) - Type of equipment used - Size of hole/slots	I	•	ı	I	N.A.
10.	Deinking Process - Type of cell - No. of cells - Deinking chemicals used (%)	I	Flotation type (Voith Ecocell) 5 cell	1	Flotation type 3 H ₂ O ₂ 0.5%-1% Na ₂ Sio ₃ 1.3%	I
. .	Cleaning System	,	1	1	2 Stage Vertical screen followed by Side hill screen 0.15 mm slot	J
12.	Thickner	Inlet cy. 3% Outlet cy. 1%	3 nos.	1	•	1 no. followed by potch washer
13.	Refining Process - Type & no. of refiners	2 refiners; 1- DDR, 1- TDR	1		2 refiners DDR	2 TDR

	- Different chemicals added in stock preparation	Dyes – as required Fillers – Soap stone	Dyes – as required Fillers –soap stone	Dyes – Methyl violet (as required) Filler- soap stone	DSA – Starch Filler – Soap stone Dyes- V-blue, Rodhamine Retention & drainage aids Deformer- rarelv	DSA- Starch Filler- Talcum powder Retention/drainage aid- Indfloc 49C Slimicide- AC770 Deformers- Napco
15.	Paper Machine details	Foundriniar	E Courd Tinior	Countrinior		
	machine					rourunier
	- Capacity (T/day)	25	ı	40	40-50	20
	- Deckle (m)	2.15	I I	2.35	3.20	2.46
0	- Speed(m/min)	235	350	250	100-250	180
10.	Head box	Dracellrizad	Draceurizod	Clocod cton diffucor tymo	Classed stars different	
				Oloseu step ulluser type	type	Open
	- Head box consistency (%)	0.6	0.5 -0.8		0.6 -0.8	0.5-0.7
17.	Wire part					
	 Type of wire Dryness after couch roll (%) 	Synthetic 20%	Synthetic 18%	Synthetic 22%	Synthetic 20%	Synthetic 22%

18.	Press part - Type of presses - No. of presses	Plain 2	Plain 2	Plain 2	Ist press-blind drill press II press- Inverse	Plain 2
	- Dryness after presses (%)	35	36	35 – 38	press 41	35 -36
19.	Dryer part - No. of dryers - Steam pressure in dryers (kg/cm ²)	28 1.8-2.0	27 3.5	28 3.2	36 3.0 – 3.5	27 + 1 M.G. dryer 3.2 –3.4
20.	Calenders - Type of calendars - No. of nips/rolls - Loading system	Solid 3 nips/4 rolls Self loading	Solid 3 nips/4 rolls Self loading			
	- Presence of aqua thermal roll	õ	oN	Q	õ	N

(Continued)

S. No.	Parameters	Mill 6	Mill 7	Mill 8	Mill 9
.	Raw Material Furnish	100% Indigenous waste paper	70% indigenous 30% Imported	100% waste paper	30% White Records 20% Text Books
	- Type of waste paper	ONP – 33%, Special	ONP_70%	ONP40%,	20% Imported LCC Mixed
		Exercise book -30%. 33%.	MIXES CULIFIES-20.76	evercise pook stock 20%, exercise note book 30%, flyleaf cutting 10%	Color Cuttings 30% ONP
2.	Pulping Process details			6	
	 Type of Hydrapulper Operating 	High Cosistency 15%	High Consistency 15%	Lomort 30 m ³ Helico Pulper 15% - 18%	High consistency Batch Pulper 16–18 %
	consistency	Deinking chemicals	NaOH - 0.4%	Hudronen Derovide Carietio	2
_	- Chemicals	- 03%	NaSiO4 - 0.6%	Sodium Silicate, Surfax	De-inking Chemical,
	hydrapulper (%)	2	Deinking Chemicals- 0.16%		Caustic, Sodium Silicate
	- Temperature (°C)	60 – 80 C	60°C	60-65 ⁰	60–65°C

4% Conical cleaner	Twin drum thickener	Voith Cell	Kneader 25% - 50°C Present in pulp mill	3 stages
3.5%/1% Anaritz Centrifugal screens 1.6 mm/0.14 mm slot	Poly Disc Fiter		N.A. Present	Two stage
3% High Density Cleaner	GLB Thickener	Flotation type (Lamort make) Used in hydrapulper	Kriama Disperger 25% H ₂ O ₂ -2% Na2SiO ₃ -1.5% 95 ⁰ C Present in pulp mill	Four
3% High density cleaner	Single drum thickner	Two stages Flotation type (Lamort make) Six Used in hydrapulper	N. A. Present in pulp mill	Three
High density cleaning - Operating consistency - Type of equipment used - Hole/slot size	Thickener	Deinking Cell	Cleaning System Dispersing system - Type of Equipment used - Consistency (%) - Chemicals used -Temperature (°C) Centrifugal cleaning	- No. of stages
ຕ່	4	ن	<u>8</u>	

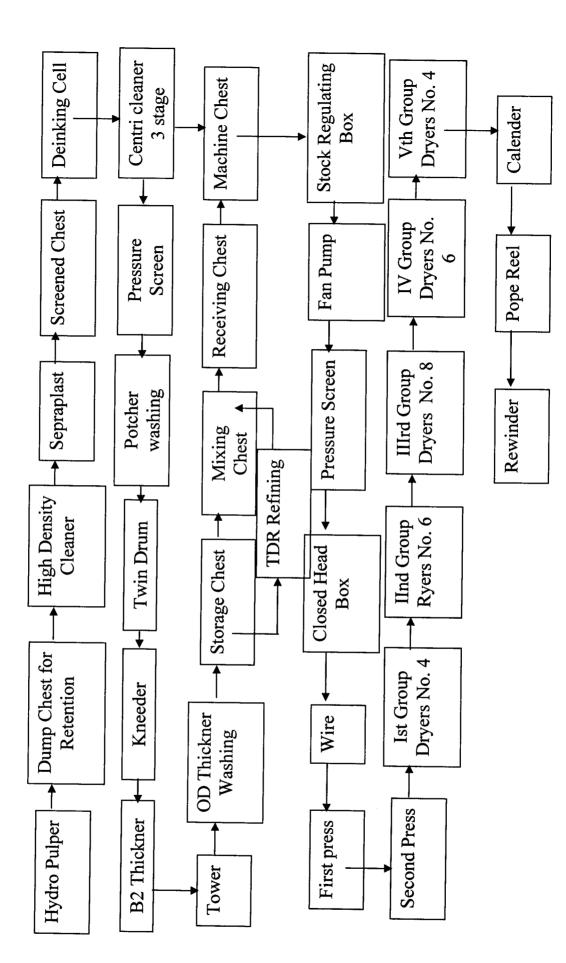
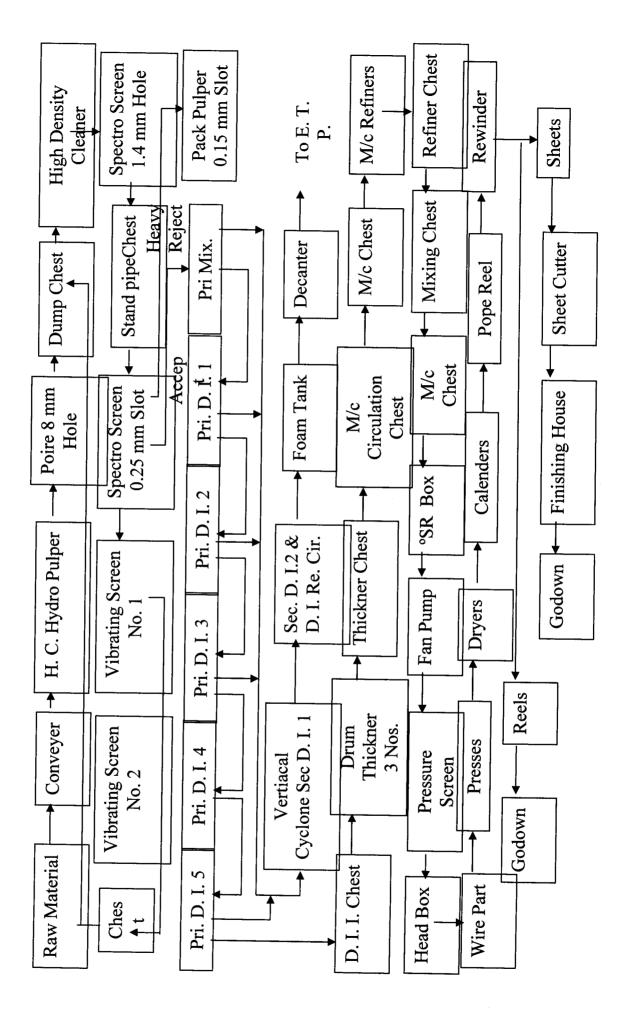
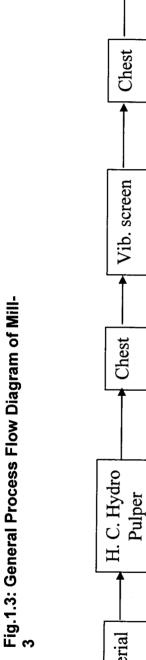
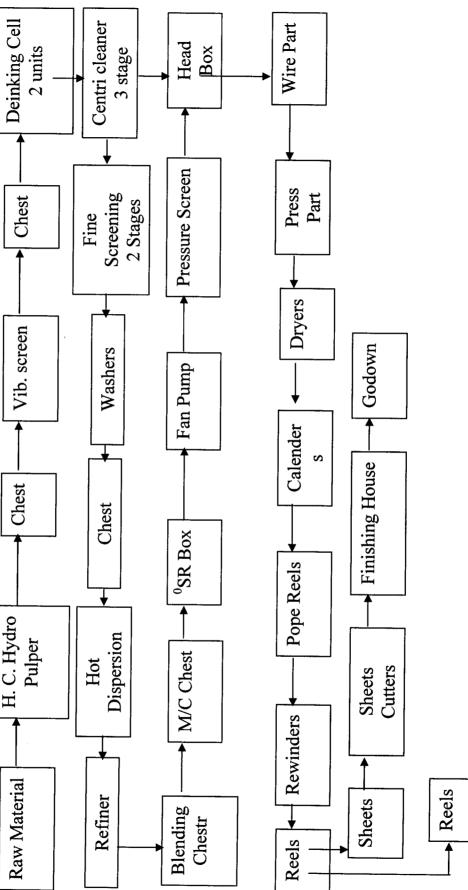
Low Consistency Pressure Screen 0.35 mm Slot	Voith Cell 5+2=7 cells	Washer	Tri Disc Refiner 17"	
Anartiz Screen 1.6mm hole/0.14 mm slot	Lamort Mac cell One Surfax	Poly Disc Filter	N.A.	Starch
Vertical screen (3 Stage) in pulp mill & one in Paper M/c Hole with size of 1.5 mm	Flotation type (Lamort make) pH-8.0	1	One refiner DDR	
Vertical screen (2 nos.) in pulp mill & one pressure screen in Paper M/c. Hole with size of 1.8mm & 2mm in	slot in paper m/c. Two stages Flotation type (Lamort make) Six Used in hydrapulper		One refiner DDR	DSA – 0.5 –1.5% Alum – 0.3%
Screening (fine) - Type of equipment used - Size of hole/slots	Deinking Process - Type of cell - No. of cells - Deinking chemicals used (%)	Cleaning System Thickner	Refining Process - Type & no. of refiners	Stock Preparation - Different chemicals added in stock preparation
o.	0	12.	13.	1 4.

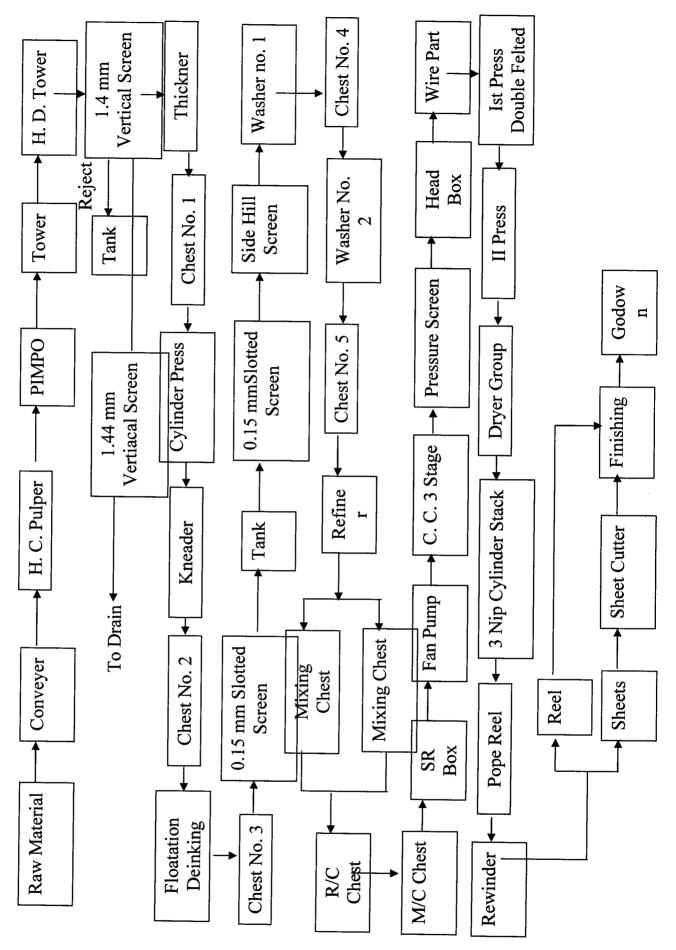
15.	Paper Machine details				
	- Type of Paper machine	Fourdrinier	Fourdrinier	Fourdriner	M.F. Machine
	- Capacity	35	110	125 MT	40
	- Deckle (m) - Speed(m/min)	2.8 180 –250	3.5 250	4.2	3.0
16.	Head box	Open	Hydraulic Pressurized	Pressurized	Open
	- Head box	0.5 –0.7%	0.5-0.7%	0.8%	0.5-0.8
	consistency (%)				
	Wire part - Type of wire - Dryness after couch roll (%)	Synthetic 22%	Synthetic 20%	Two half layer synthetic	Cantilever Wire Part with all Foils 20%
	Press part - Type of presses - No. of presses	Blind drill press Two	Bi nip press with blind drill Two	Binip third press 3	lst press-double felted) II press- Reverse press 2
	 Dryness after presses (%) 	41 – 43%	42-43%	1	38%

10 22 21 3.0-3.5% 3.0-3.5 2 2	SolidSolidSingle Stack3nips/4 rolls1 nip/ 2 roll3 nips/4 rolls3 nips/4 rolls3neumatic1 nip/ 2 roll3 nips/4 rolls3 nips/4 rollsPneumaticBellowsNot presentNot present
Dryer part - No. of dryers - Steam pressure in dryers (kg/cm ²)	Calenders - Type of calendars - No. of nips/rolls - Loading system - Presence of aqua thermal roll

Fig.1.1: General Process Flow Diagram of Mill-1

Appendix II


Fig.1.2 General Process Flow Diagram of Mill-2

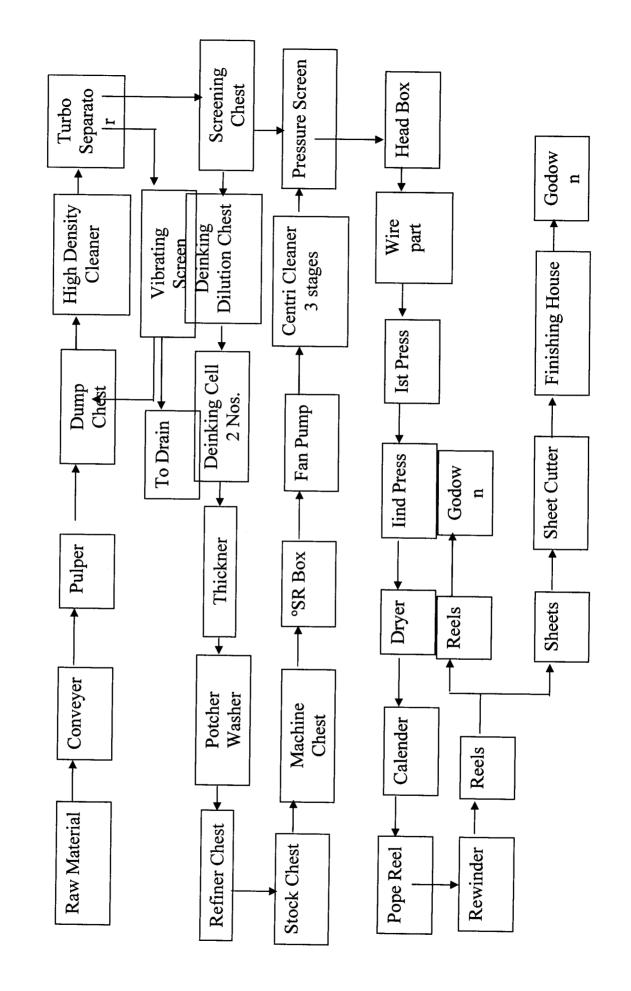
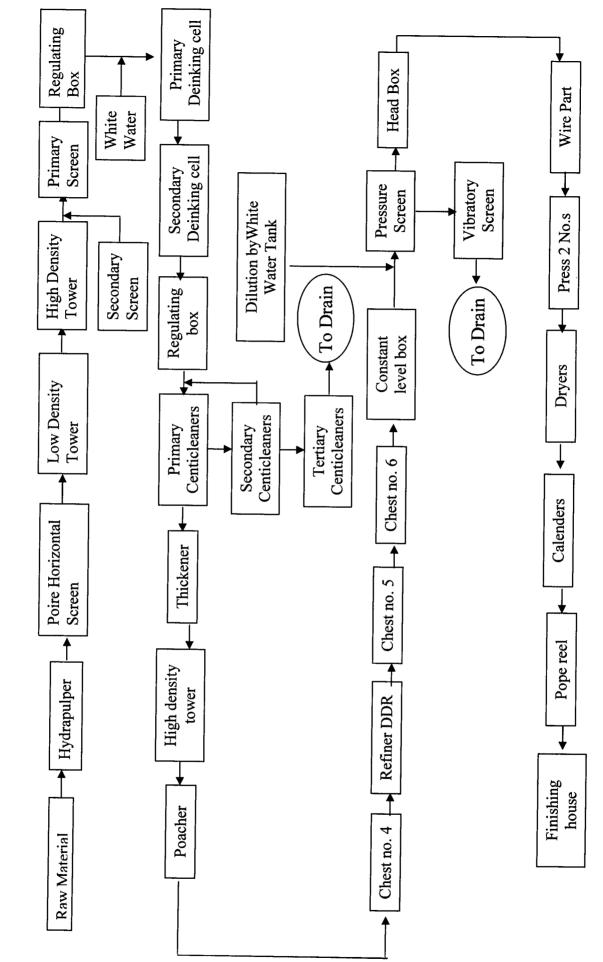



Fig. 1.5: General Process Flow Diagram of Mill-5

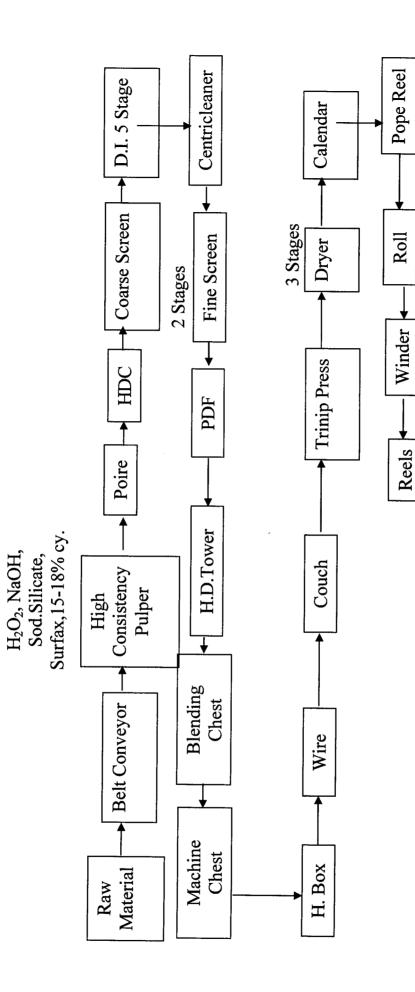
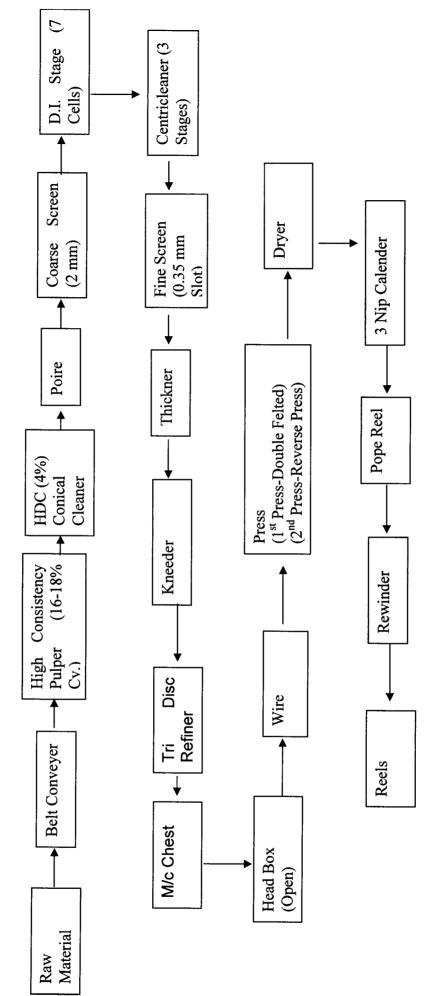


Fig.1.6 General Process Flow Diagram of Mill-6

High Density Cleaner Chest Disperser (25% Cy.) (Krima) Na₂SiO₃ (1.5%) NaOH (0.4%) H_2O_2 (2%) Heating Tubes(95⁰C) Straight Through Dump Tower Dryers (22 No.s) Final Tower Press Drill Screen (1.2 mm) Screw press (25% Cy.) Poir Constant Level M/c Chest Calenders Bi nip Press Box Refiner DDR High Density **GLB** Thickener Pulper Constant Level Wire Part Pope Reels **Deinking Cell** Box 0.9-1.2% (Lamort) Belt Conveyor 3 Stage fine Screen Pressurized Head Box Fan Pump Rewinders Constant Level Box Raw Material Centricleaners Pressure Cleaners Centri screen 4-stage Reels or Sheets Chest

Fig.1.7 General Process Flow Diagram of Mill-7



.

Fig. 1.9: General Process Flow Diagram of Mill-9

· ;

à

DYNAMIC FILTRATION SYSTEM

PARKER PRINT SURF (PPS) TESTER